The Effect of Arita in Postoperative Drainage of Patients with Breast Cancer Modified Radical Surgery

Tong SUNa, Li-Ying QUb, Guang SUNc*

Breast Surgical Department of China-Japan Union Hospital Jilin University, 126 Xiantai Street, Changchun 130033, P.R. China

a15043034858@126.com, b188766726@qq.com, cguangsun2013@163.com,

*Corresponding author

Keywords: Breast cancer, Drainage fluid, Arista.

Abstract. Purpose: To study the application of Arista in breast cancer modified radical surgery, whether there is any effect on postoperative drainage. Methods: To collect the data of patients who have undergone breast cancer modified radical surgery in our hospital within two years; It was divided into control group, single dose group, double dose group and multi-dose group, and compared with those in the four groups. Results the flow rate of the single dose group was faster than that of the control group, and the double-dose group was better than that of the single dose group, and there was no significant difference between the two groups. Conclusion in the treatment of breast cancer modified radical operation, it can significantly reduce the tissue exudation and reduce the induced flow, and the overuse does not have a better effect.

Introduction

Breast cancer is a high incidence of malignant tumors in women, and the incidence is always high, and the most effective treatment for breast cancer is still surgery [1, 2]. In ensuring that surgical removal of the range, on the basis of enough, ask us to improve the quality of life in patients with largest modern medicine, improve the recovery rate, and postoperative wounds effusion quantity and the organization as the drain joint degree of common reference index, are used to preliminary judgment intestine adenocarcinoma patients of postoperative recovery[3]. If the patient has a large amount of drainage, it often indicates that the skin flap and chest wall are not well fitted, and the patient's change of medicine and hospital stay should be prolonged. The constant pumping and pressure bandaging not only increases the patient's pain, but also does not solve the problem fundamentally. So, in order to determine whether Arista lead flow in patients with breast cancer modified radical surgery, we selected during two years from 2012 to 2014 patients included in the standard of a total of 160 people, each group of each 40 people. In addition to the control group, there was no use of the Arista, and the other three groups were treated with single, double and multiple doses in the wound spray. In addition to the observation of hemostasis in the operation, we have the following study on the effect of postoperative drainage fluid.
Data and Method

Inclusion Criteria

Patients have no systemic diseases (such as hypertension, rheumatic immune diseases, diabetes and other endocrine diseases), and no external factors affect tissue healing. 160 patients with unilateral breast cancer between 40 to 50 years of age were treated with unilateral breast cancer modified radical surgery, respectively, and were attracted by the negative pressure of a drainage tube under the subcutaneous and underarm of the chest.

Group A: conventional electric knife hemostasis, postoperative pressure dressing, negative pressure drainage bottle drainage.

Group B: conventional electric knife hemostasis, the wound surface was evenly sprayed with Arista powder, postoperative pressure bandage, and negative pressure drainage bottle drainage.

Group C: conventional electric knife hemostasis, the wound surface was evenly sprayed with the Arista blood powder a double dose, postoperative pressure bandage, negative pressure drainage bottle drainage.

Group D: conventional electric knife hemostasis, the wound surface was evenly sprayed with 3 branches or 4 branches of the Arista, the postoperative pressure was packed, and the negative pressure drainage bottle was induced.

Surgery

All patients adopt the mode of operation for the unilateral breast cancer modified radical operation range up to the edge of collarbone, to the ipsilateral sternum within the outer rim, before the next to the rectus sheath, outside to the latissimus dorsi front, cleaning the axillary lymph nodes and adipose tissue, all patients included in lymph nodes between chest and small muscles and muscle. Medium and small vascular ligation 3-0 to desire a thread of silk, with ultrasonic knife handle submaxillary lymphatic, electric knife free flap and pectoralis major fascia, after confirmed there is no active bleeding, with warm saline flushing and cavity repeatedly, choose low, respectively, the other stamp drainage chest subcutaneous and axillary, external suction bottle. 5-0. the skin was sutured with the skin, and the dressing was externally applied. The elastic bandage was applied to compress the skin. After the operation, it was changed to the ordinary bandage, the interval was changed for 1 day, and the flow rate of 1-4d after the operation was observed.

Statistics

SPSS13.0 software package was used for statistical analysis. Comparison between group by t test, count data using \(\chi^2 \) test.

Result

Postoperative drainage records were recorded and the subcutaneous drainage of the chest in the control group was the first day 20-60ml, the second day 20-30ml, the 3rd day 10-30ml, and the 4th day 1-25ml. The subcutaneous drainage of the single dose group was 5-50ml in the first day, 20-30ml in the second day, 1-25ml in the 3rd day, and 1-15ml on the 4th day. The subcutaneous drainage of the two dose groups was 5-40ml on the first day, 15-25ml on the second day, 1-20ml on the 3rd day, and 1-10ml on the 4th day. The subcutaneous drainage of
the multi-dose group was 10-40ml on the first day, 20-30ml on the second day, 5-20ml on the 3rd day, and 1-10ml on the 4th day.

In the control group, the flow rate of axillary drainage was 50-200ml on the first day, the second day was 50-180ml, the third day was 30-80ml, and the fourth day was 20-80ml. The single dose group was the first day of 40-120ml, the second day was 30-90ml, the third day was 25-70ml, and the 4th day was 5-60ml. The two-dose group was the first day of 30-100ml, the second day 20-60ml, the 3rd day 25-50ml, and the 4th day 5-40ml. The underarm drainage volume of the multi-dose group was 30-120ml on day 1, 20-55ml on day 2, 30-60ml on day 3, and 10-40ml on day 4.

Arist applied in breast cancer patients with modified radical can obviously reduce postoperative flow[4,5], single dose group is better than that of control group, double doses group reduce tissue out faster, and multi-dose group, there is no better, even flow rate is more than double the dose group, the difference was statistically significant.

Discussion

There are many sources of postoperative drainage fluid [7]. Intraoperative hemostasis does not completely increase the postoperative blood seepage. The death chamber is formed to prevent the flap from the chest wall, and the accumulation of fluid in the cavity is not conducive to the circulation of the skin flap, further aggravating the formation of the effusion and creating a vicious cycle. After the lymph node dissection of the upper extremity, lymph flow is not free, or lymphatic fistula is formed, lymph fluid accumulates in the invasive cavity; the use of electric knife in the operation may be beneficial to hemostasis, but it may form postoperative fat liquefaction, which will increase the drainage fluid. The postoperative activity was not good or the upper extremity was pulled, and the formation of fluid was aggravated. We deal with the drainage fluid, more often to change the location of the drainage tube, compression bandage, increase pressure suction to reduce traffic, not only increased in quantity, also adds to the pressure and pain of patients. Arista can reduce the damage of electric burning and coagulation to tissue, reducing blood seepage, hematoma and cell exudation; Inhibits fibroblast production and reduces fibrinogen production to promote absorption; Reduce lysosomal enzyme exudation and inflammatory response; To promote the formation of hyaluronic acid in the wound tissue; Promoting epidermal cell regeneration; With the high affinity of mesenchymal cells and fibroblast cell membranes, these migration capacities are enhanced and the cells are directed to migrate, thus improving the endogenous repair process; Quickly to form their own fibrin network structure, the function block in the tissue surface, as a temporary barrier in tissue repair inhibition of postoperative hemorrhage and exudation, reducing the number of permanent adhesion formation skeleton of blood clots. This study selected the same basic conditions of patients, intraoperative bleeding, good moderate compression bandage, through the use of Arista and usage of the comparative study, prove Arista amount used can improve the quality of patients with postoperative recovery, reduce drainage fluid effectively, shorten the treatment duration, early extubation, reduce the length of hospital stay, is worth promoting in breast cancer, modified radical and avoid excessive make caused by waste.
References

