Hybrid Experimental and Numerical Characterization of the 3D Response of Woven Polymer Matrix Composites
Abstract
10.12783/asc36/35940
Full Text:
PDFReferences
Matzenmiller, A. L. J. T. R., Lubliner, J., & Taylor, R. L. (1995). A constitutive model for
anisotropic damage in fiber-composites. Mechanics of materials, 20(2), 125-152.
Hoffarth, C., Rajan, S. D., Goldberg, R. K., Revilock, D., Carney, K. S., DuBois, P., &
Blankenhorn, G. (2016). Implementation and validation of a three-dimensional plasticity-based
deformation model for orthotropic composites. Composites Part A: Applied Science and
Manufacturing, 91, 336-350.
Systemes, D. (2014). Abaqus analysis user’s guide. Solid (Continuum) Elements, 6, 2019.
Hallquist, J.: LS-DYNA Keyword User’s Manual, Version 970. Livermore Software
Technology Corporation, Livermore, CA, 2013.
Jackson, K. E., Littell, J. D., Horta, L. G., Annett, M. S., Fasanella, E. L., & Seal, M. D.
(2014). Impact testing and simulation of composite airframe structures. National Aeronautics
and Space Administration, Langley Research Center.
Khaled, B., Shyamsunder, L., Hoffarth, C., Rajan, S. D., Goldberg, R. K., Carney, K. S., ... &
Blankenhorn, G. (2018). Experimental characterization of composites to support an orthotropic
plasticity material model. Journal of Composite Materials, 52(14), 1847-1872.
Shyamsunder, L., Khaled, B., Rajan, S. D., Goldberg, R. K., Carney, K. S., DuBois, P., &
Blankenhorn, G. (2020). Implementing deformation, damage, and failure in an orthotropic
plastic material model. Journal of Composite Materials, 54(4), 463-484.
Harrington, J., Hoffarth, C., Rajan, S. D., Goldberg, R. K., Carney, K. S., DuBois, P., &
Blankenhorn, G. (2017). Using virtual tests to complete the description of a three-dimensional
orthotropic material. Journal of Aerospace Engineering, 30(5), 04017025.
Makeev, A., He, Y., & Schreier, H. (2013). Short†beam Shear Method for Assessment of
Stress–Strain Curves for Fibre†reinforced Polymer Matrix Composite Materials. Strain, 49(5),
-450.
Littell, J. D., Binienda, W. K., Roberts, G. D., & Goldberg, R. K. (2009). Characterization of
damage in triaxial braided composites under tensile loading. Journal of Aerospace
Engineering, 22(3), 270-279.
Gilat, A., & Seidt, J. D. (2018). Compression, Tension and Shear Testing of Fibrous Composite
with the Split Hopkinson Bar Technique. In EPJ Web of Conferences (Vol. 183, p. 02006). EDP
Sciences.
Ishikawa, T., & Chou, T. W. (1983). One-dimensional micromechanical analysis of woven
fabric composites. AIAA journal, 21(12), 1714-1721.
Aboudi, J., Arnold, S. M., & Bednarcyk, B. A. (2013). Micromechanics of composite materials:
a generalized multiscale analysis approach. Butterworth-Heinemann.
Bednarcyk, B. A., & Arnold, S. M. (2003). Micromechanics-based modeling of woven polymer
matrix composites. AIAA journal, 41(9), 1788-1796.
Liu, K. (2011). Micromechanics based multiscale modeling of the inelastic response and failure
of complex architecture composites. Arizona State University.
Sorini, C., Chattopadhyay, A., & Goldberg, R. K. (2020). An improved plastically dilatant
unified viscoplastic constitutive formulation for multiscale analysis of polymer matrix
composites under high strain rate loading. Composites Part B: Engineering, 184, 107669.
Bednarcyk, B. A., & Arnold, S. M. (2002). MAC/GMC 4.0 User's Manual: Keywords Manual.
Volume 2.
ASTM International. (2017). ASTM D3039/D3039M-17 Standard Test Method for Tensile
Properties of Polymer Matrix Composite Materials. Retrieved from
https://doi.org/10.1520/D3039_D3039M-17
ASTM International. (2020). ASTM D7078/D7078M-20e1 Standard Test Method for Shear
Properties of Composite Materials by V-Notched Rail Shear Method. Retrieved from
https://doi.org/10.1520/D7078_D7078M-20E01
ASTM International. (2016). ASTM D2344/D2344M-16 Standard Test Method for Short-Beam
Strength of Polymer Matrix Composite Materials and Their Laminates. Retrieved from
https://doi.org/10.1520/D2344_D2344M-16
Liu, K., Hiche, C., & Chattopadhyay, A. (2009). Low-Speed Projectile Impact Damage
Prediction and Propagation in Woven Composites. In 50th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive
Structures Conference 11th AIAA No (p. 2446).
Daniel, I. M., Ishai, O., Daniel, I. M., & Daniel, I. (2006). Engineering mechanics of composite
materials (Vol. 1994). New York: Oxford university press.
Goldberg, R. K., Roberts, G. D., & Gilat, A. (2005). Implementation of an associative flow rule
including hydrostatic stress effects into the high strain rate deformation analysis of polymer
matrix composites. Journal of Aerospace Engineering, 18(1), 18-27.
Murthy, P. L., Ghezeljeh, P. N., & Bednarcyk, B. A. (2018). Development and Application of a
Tool for Optimizing Composite Matrix Viscoplastic Material Parameters.
Tomblin, J., McKenna., Ng, Y., and Raju, K. S., 2001: Advanced General Aviation Transport
Experiments B-Basis Design Allowables for Epoxy – Based Prepreg AGATE-WP3.3-033051-
September.URL https://agate.niar.wichita.edu/Materials/WP3.3-033051-095.pdf
Tomblin, J., McKenna., Ng, Y., and Raju, K. S., 2001: Advanced General Aviation Transport
Experiments B-Basis Design Allowables for Wet Layup / Field Repair Fiber Reinforced
Composite Material Systems: AGATE-WP3.3-033051-115. August.URL
https://agate.niar.wichita.edu/Materials/WP3.3-033051-115.pd
Tomblin, J., McKenna., Ng, Y., and Raju, K. S., 2001: Advanced General Aviation Transport
Experiments A-Basis and B-Basis Design Allowables for Epoxy-based Prepreg AGATEWP3.3-
-131. https://agate.niar.wichita.edu/Materials/WP3.3-033051-131.pdf
Refbacks
- There are currently no refbacks.