Deep Learning Framework for Woven Composite Analysis
Abstract
10.12783/asc36/35816
Full Text:
PDFReferences
Ishikawa, T., & Chou, T. W. (1983). One-dimensional micromechanical analysis of woven fabric
composites. AIAA journal, 21(12), 1714-1721.
Gowayed, Y. (2013). Types of fiber and fiber arrangement in fiber-reinforced polymer (FRP)
composites. In Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering (pp.
-17). Woodhead Publishing.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems. 2012;25:1097-105.
Goodfellow I. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.
Dec 31.
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018, July). Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 974-983).
Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., & Shen, D. (2015). Deep convolutional neural
networks for multi-modality isointense infant brain image segmentation. NeuroImage, 108, 214-224.
Conneau, A., Schwenk, H., Barrault, L., & Lecun, Y. (2016). Very deep convolutional networks for
natural language processing. arXiv preprint arXiv:1606.01781, 2, 1.
Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., & Langs, G. (2017, June).
Unsupervised anomaly detection with generative adversarial networks to guide marker discovery.
In International conference on information processing in medical imaging (pp. 146-157). Springer,
Cham.
Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., & Krishnan, D. (2017). Unsupervised pixellevel
domain adaptation with generative adversarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 3722-3731).
Souly, N., Spampinato, C., & Shah, M. (2017). Semi supervised semantic segmentation using
generative adversarial network. In Proceedings of the IEEE international conference on computer
vision (pp. 5688-5696).
Zhao, J., Mathieu, M., & LeCun, Y. (2016). Energy-based generative adversarial network. arXiv
preprint arXiv:1609.03126.
Yu, L., Zhang, W., Wang, J., & Yu, Y. (2017, February). Seqgan: Sequence generative adversarial
nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No.
.
Feng, H., & Prabhakar, P. (2021). Difference-based deep learning framework for stress predictions
in heterogeneous media. Composite Structures, 269, 113957.
H. Bang, S. Park and H. Jeon. Defect identification in composite materials via thermography and
deep learning techniques. Composite Structures, 2020.
X. Liu, F. Gasco, J. Goodsell and W. Yu. Initial failure strength prediction of woven composites
using a new yarn failure criterion constructed by deep learning. Composite Structures, 2019.
O. Sigmund and K. Maute. Topology optimization approaches. Structural and Multidisciplinary
Optimization, 48(6):1031–1055, 2013.
D. W. Abueidda, M. Almasri, R. Ammourah, U. Ravaioli, I. M. Jasiuk, and N. A. Sobh. Prediction
and optimization of mechanical properties of composites using convolutional neural networks.
Composite Structures, 227:111264, 2019.
Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.
Lin, H., Brown, L. P. & Long, A. C. 2011. Modelling and Simulating Textile Structures
using TexGen. Advanced Materials Research, 331, 44-47
Abaqus, G. (2011). Abaqus 6.11. Dassault Systemes Simulia Corporation, Providence, RI, USA.
Matveev, M. Y. (2015). Effect of variabilities on mechanical properties of textile
composites (Doctoral dissertation, University of Nottingham).
Li, S., & Wongsto, A. (2004). Unit cells for micromechanical analyses of particle-reinforced
composites. Mechanics of materials, 36(7), 543-572.
Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-85.
Refbacks
- There are currently no refbacks.