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ABSTRACT

This short article describes one of the latest advancements of a
monitoring/inspection technique for the estimation of localized longitudinal stress
in continuous welded rails (CWR). The technique is based on the use of vibration
measurements and machine learning (ML). A finite element analysis is conducted
to model the relationship between the boundary conditions and the longitudinal
stress of any given CWR to the vibration characteristics of the rail. The results of
the numerical analysis are used to train a ML algorithm that is then tested using
field data obtained by an array of accelerometers polled on the track of interest. The
proposed technique was tested in the field. A commercial FEM software was used
to model the rail track as a short rail segment repeated indefinitely and under
varying boundary conditions and stress. A ML model was developed to infer the
rail neutral temperature and the local resistance of rails to vertical and lateral
displacement. The results of the experiments demonstrated that the success of the
technique is dependent on the accuracy of the model and the ability to properly
label the modes of the detected frequencies. This study builds upon previous
research conducted at the University of Pittsburgh and the interested reader is
referred to previous publications from the authors for more details about the
proposed technique.
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INTRODUCTION

With the advent of high-speed rail and the increase of tonnage moved by freight
transportation, the use of continuous welded rails (CWR) has increased
significantly worldwide. The mechanical and dynamic behavior of a CWR is a
function of the track resistance, rail temperature, misalignment, as well as other
secondary variables. When the temperature 7r of a given rail is above the so-called
rail neutral temperature (RNT) 7y, defined as the temperature at which the
longitudinal stress is zero, the rail is subject to longitudinal compression. When the
compressive stress become extreme, buckle may occur. This leads to the need for
reliable ways to estimate longitudinal stress and RNT. Current state-of-the-art
methods are mostly invasive and target the measurement of longitudinal stress from
which the RNT is estimated using a simplified well-known relationship.

The rail cutting method consists of cutting the rail at cold temperatures and
measuring the gap (the rail opening) between the opposite faces at the cut [6]. The
longitudinal stress is zero at the cut and progressively increases to the pre-cut stress
values at a location that can be hundreds of meters away. Such force difference is
denoted as the longitudinal force profile and the length of the rail having reduced
internal longitudinal force is referred to as the influence zone. VERSE® [7] is a
static semi-invasive method that links the axial force to the vertical force required
to lift 30 meters of unanchored rail by a certain amount.

Over the last three decades nondestructive evaluation (NDE) methods based on
electromagnetism, ultrasounds, acoustics, high-frequency vibration, and optics have
emerged, and most of these methods were thoroughly reviewed by Enshaeian and
Rizzo [1] and Huang et al. [2].

Vibration-based methods are one of the earliest approaches ever proposed. They
are based on the physical evidence that longitudinal stress alters the natural
vibration frequencies and modal characteristics of beams and beam-like structures,
including CWR. However, any vibration-based monitoring system faces a critical
challenge: the effect of the boundary conditions. In CWR, the vibrations are not
solely influenced by axial loads but by other factors, such as fasteners, sleepers’
materials, distance between consecutive crossties, and environmental variability.
These factors add complexity to an already challenging problem.

To address these challenges, Machine Learning (ML) has emerged as a
powerful tool to identify the complex patterns and relationships within data, making
them well-suited to account for the multifactorial influences on rail vibrations. Over
the last few years, our team has developed a NDE technique based on the
measurement of low-frequency (< 1 kHz) rail vibrations, and the computation of the
corresponding power spectral densities (PSD) to train a machine learning algorithm
(MLA) to predict the RNT [3-10] Those works focused on the experimental
verification of the research hypotheses in the laboratory and in the field, as well as
on the development of the MLA trained and tested with the experimental data.

The study presented in this article summarizes latest developments especially
related with the development of a wayside installation system designed and tested
to allow for frequent measurements and monitoring of any railroad track without
interfering with normal train operation or maintenance activities. In this study, the
deep learning strategy was validated by using data collected during three field visits



and 11 days of testing at two controlled loop facilities in Pueblo (CO) in 2021,
2022, and 2024, and then blindly tested at three revenue service lines. Finally, the
experimental campaign conducted in Pueblo and at the revenue service lines in
2024 are reported in this paper for the first time.

EXPERIMENTAL SETUP

This section briefly describes the three test setups deployed in Colorado. More
insights about the field visits in 2021 and 2022 are available in [4,5,7-10].

Three test days were conducted in May 2021 at the FRA Transportation
Technology Center (TTC). The first two days were on a 5° curved RE 141 rail on
concrete ties while the third day was on a tangent RE 136 wood-based section. Two
tri-axial PCB 356B08 wired accelerometers were bonded to the gage side of the rail
head on the midspan and above the crosstie. The accelerometers were sampled at 10
kHz and triggered manually with an instrumented hammer used to induce a lateral
impact on the field side. Two K-type thermocouples were attached to the head and
web of the rail. The setup required a signal conditioner, an oscilloscope, and a
power supply. TTCI instrumented the rails with strain gauge rosettes and
temperature sensors to provide the true RNT.

Approximately one year later, four days were spent at the same facility with
several improvements to the setup. The same PCB accelerometers sampling at 10
kHz were paired with two wireless (WL) LORD G-Link-200-40G sensors sampling
at 4096 Hz. The wireless signals were zero-padded to match the frequency
resolution of 0.1 Hz. The wired and the WL sensors wireless counterparts were
attached to the rail using permanent magnets. The instrumented hammer was
secured to a motor-operated arm, which acted as a pendulum, to improve the
repeatability of the impacts.

The newest field test at a controlled facility was conducted at the FAST Loop, a
new site built and operated by MxV Rail. Our setup consisted of a non-intrusive
wayside system (Fig. 1) designed to enhance repeatability, increase the number of
hourly measurements, reduce footprint, allow for remote operation, minimize cost,
and to limit track closure to the time needed for installation and removal. In the



study presented here, three hits per minutes, i.e., 180 impacts per hour, was
selected. Four days were spent onsite. Two wayside units were deployed about 5.6
m (220 in.) apart on the field side of the track, and each unit was paired to two WL
sensors identical to those used in 2022. The setup included a power generator, a
laptop to communicate with the sensors and to receive the signals from them, and
two thermocouples attached to the head and web to measure rail temperature.

The rail temperature and the RNT estimated by MxV across the four days of our
field visits. Based on such readings, the rail was nearly always in tension as 7z was
below Ty. The only exception occurred in the early afternoon hours during the
second day of testing when Tr > Ty (strain gage #3).

Table 1 summarizes the test conditions including the number of signals
collected during the three field visits and the 11 days of testing. One of the most
evident improvements over the years, has been the number of waveforms collected
(see rightmost column of the table). The first time 179 signals were collected. One
year later, the samples were 1,457, whereas the most recent setup configuration
enabled the acquisition of 4,454 signals. The other significant transformation is the
simplification of the setup and the deployment of a truly non-intrusive monitoring
system that would not interfere with and would not be affected by regular passenger
or freight train operation.

# of . Tie Sensor Impact . # of
Year Alignment | RE . P Site .

days material type locations signals
2021 1 Tangent 136 Wood Wired One (manual) TTC 70
2021 2 5° curve 141 Concrete Wired One (manual) TTC 109
2022 | 2 Tangent | 136 | Wood W“\:,dLand One (pendulum) | TTC 512
2022 2 5° curve 141 | Concrete W‘“\';l‘lLand One (pendulum) | TTC 945
2024 3 Tangent 136 Wood WL Two (impactor) FAST 3075
2024 1 Tangent 136 Wood WL Two (impactor) FAST 1379

Table 1 — Summary table of the instrumented rails tested in Pueblo (CO) in years 2021, 2022, and
2024. Note: WL = wireless.

RESULTS

The use of the wireless accelerometers and the automatic nature of the impact
mechanism bring the potential risk of false positives/negatives. In the present
context, false positives are waveforms accidentally recorded by the sensors and
unrelated to any individual strike of the rod. False negatives represent vibrations
triggered by the rod but not recorded by the sensor(s). As such, the raw waveforms
were post-processed (data cleansing) to remove false positives, and to identify and
eventually remove outliers generated by unwanted interferences. Details about such
filtering procedures were presented in [11] and are not repeated here for the sake of
space.

The developed MLA architecture consisted of a IDCNN designed to use only
the normalized frequency spectrum of the vertical and lateral components of the
vibrations. The deep learning approach benefits from the ability of the convolution
operation to automatically extract relevant spatial features in the frequency domain



when mapping to a target value, in this case rail neutral temperature, which is
contrary to which utilized the entire PSDs for the feature space. This hierarchical
approach is commonly used in computer vision and large language applications to
learn relative features for systems that cannot be modelled easily. Additionally,
removal of the rail temperature allows for one less measurement for this technique.
Details about such filtering procedures were also presented in [11] and are not
repeated here for the sake of space.

To avoid overfitting, the best validation loss was monitored using the Mean
Squared Error (MSE), defined as:
MSE = =31 (¥, — 7,2 (1

where, Y; is the true RNT, Y; is the predicted RNT, and n represents the
number of samples. MSE calculates the mean square residual error between the
predicted value and target, where the square assists in penalizing larger residual
predictions. A period of 200 epochs was used to train alongside a validation split of
15% and test split of 50%. MSE was used as the loss function for training while the
Mean Absolute Error (MAE):

MAE = >3 |v, - 7 2)

was used for validating the model because this value measures the mean
absolute residual error between the predicted value and target without penalizing
outliers like the MSE.

Adam was chosen as the optimizer with a learning rate of 0.01 given its
adjustable learning rate and faster convergence [12]. Additionally, weights were
adjusted every 64 signals by using a minibatch size of 64.

Three analyses were conducted. In the first analysis the deep learning model
was trained using 2021 and 2022 data to estimate the RNT at the TTC tracks. The
same trained model was then used to estimate the RNT of the MxV FAST loop
track. In the third analysis the model was trained using data from all 11 days on the
field to estimate the RNT at both field sites. The results from this latter analysis are
presented here.

The deep learning model was trained by randomly selecting 50% of the data
from each sensor and each of the 11 days in the field. The same validation split of
15% in the training set was used. The results are presented in Fig. 2 and shows the
predicted RNT against the true RNT estimated with the strain gages. The bisector
indicates the ideal case of a perfect match whereas the two dashed parallel lines are
+2.78 °C (or £5 °F) distant from the ideal bisector and represent a desirable
accuracy. The MAE associated with all the years is presented as well. The figure
demonstrates how well the MLA was able to estimate the RNT.
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Figure 2 — RNT calculated from a strain gage rosette vs the RNT predicted with the MLA. The
dashed lines indicate +2.78 °C offsets from the bisector. 50% of the cleansed data from each day was
used for training and the remaining 50% was used for testing. The mean absolute error (MAE) was
calculated according to Eq. (2).

CONCLUSION

This brief article presents one of the latest advancements of a vibration-based
method to monitor CWR with the purpose of estimating the RNT and then inferring
the longitudinal stress. The principal novelty of the paper is the design and testing
of a compact device for the excitation of local vibrations in the rail. The compact
device allows for more repeatable results of several new field tests conducted using
a novel NDT method to determine RNT. A newly designed impactor allows for
conducting measurements at any location without closing the track for more than a
few minutes and without requiring personnel on the track. Moreover, the device is
entirely non-invasive, as demonstrated by active trains running over the track
during revenue service field testing. The latest MLA based on deep learning
eliminates the need to measure the rail temperature. However, it was still measured
and collected for potential future developments as changes in RNT have been
observed to be heavily influenced by rail temperature. This has further confirmed
that the RNT can be measured with low frequency information but will require
exposure to more track conditions to generalize. With the advent of significantly
increased data collection from the new device, a new cleansing strategy was
implemented to reject outliers, which will have positive implications for future
applications involving moving vehicles.

Owing to the scope of this article, the interested readers are referred to paper
[11] for more insights about the setup and results of the study briefly presented
here.

ACKNOWLEDGEMENTS



The second author was supported by the Association of American Railroads
(AAR) under the University Grand Challenge Master Contract No. 20-0701-
007537, Modification 4, Task Order 01, PO 100034 (Dr. Anish Poudel as Technical
Monitor). The field tests in years 2021 and 2022 were conducted under the support
of the U.S. Federal Railroad Administration under contract FRI9RPD3100000022
(Dr. Robert Wilson as Technical Monitor) as well. The authors acknowledge the
logistic support of MxV Rail and Mr. Christopher Johnson, during the planning and
execution of all field tests. The authors are also grateful to MxV Rail for sharing
their strain gage data as well as the service line support under David Kress, Elliott
Clakeley, and Daniel Stabile of Norfolk Southern and Brad Spencer of CSX.

The contents of this document are not meant to represent standards and are not
intended for use as a reference in specifications, contracts, regulations, statutes, or
any other legal document. The opinions and interpretations expressed are those of
the authors and other duly referenced sources. The views and findings reported
herein are solely those of the writers and not necessarily those of the host railroads.

REFERENCES

1 A. Enshaeian and P. Rizzo, Stability of continuous welded rails: A state-of-the-art review of
structural modeling and nondestructive evaluation. Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit, 235(10), (2021) 1291-1311.
https://doi.org/10.1177/0954409720986661.

2 C.L. Huang, Y. Wu, X. He, M. Dersch, X. Zhu, and J.S. Popovics, A review of non-destructive
evaluation techniques for axial thermal stress and neutral temperature measurement in rail:
Physical phenomena and performance assessment. NDT & E International, 137, (2023)
p-102832. https://doi.org/10.1016/j.ndteint.2023.102832.

3 A. Enshaeian, L. Luan, M. Belding, H. Sun, and P. Rizzo, A contactless approach to monitor rail
vibrations. Experimental Mechanics, 61, (2021) 705-718. https://doi.org/10.1007/s11340-021-
00691-z.

4 A. Enshaeian, M. Belding, and P. Rizzo, Stress Evaluation in Rails Based on Vibration Data and
Artificial Intelligence. Transportation Research  Record, 2677(8), (2023) pp.705-720.
https://doi.org/10.1177/03611981231157726.

5 A. Enshaeian, M. Belding, S. Baktash, and P. Rizzo, Vibration Nondestructive Testing of
Continuous Welded Rails: A Finite Element Analysis. Research in Nondestructive Evaluation,
(2024) 1-17. https://doi.org/10.1080/09349847.2024.2433483

6 M. Belding, A. Enshaeian, and P. Rizzo, Vibration-based approach to measure rail stress:
Modeling and first field test. Sensors, 22(19), (2022) p.7447. https://doi.org/10.3390/s22197447.

7 M. Belding, A. Enshaeian, and P. Rizzo, A Machine learning-based approach to determining
stress in rails. Structural Health Monitoring, 22(1), (2023) pp-639-656.
doi:10.1177/14759217221085658

8 M. Belding, A. Enshacian, and P. Rizzo, Nondestructive rail neutral temperature estimation
based on low-frequency vibrations and machine learning. NDT & E International, 137, (2023)
p.102840. https://doi.org/10.1016/j.ndteint.2023.102840.

9 M. Belding, A. Enshaeian, C. Hager, and P. Rizzo, Machine Learning for the Nondestructive
Prediction of Neutral Temperature in Continuous Welded Rails. Research in Nondestructive
Evaluation, 34(3-4), (2023) pp.121-135. https://doi.org/10.1080/09349847.2023.2237446.

10 M. Belding, A. Enshaeian, and P. Rizzo, Nondestructive Estimation of Neutral Temperature In
Rails: A Comparative Study Of Machine Learning Strategies. Materials Evaluation, §2(1),
(2024) pp.67-78. https://doi.org/10.32548/2024.me-04384

11 Belding, M, Baktash, S., Hager, C., and Rizzo, P. (2025). “A Wayside Monitoring System for the
Estimation of the Rail Neutral Temperature,” Mechanical Systems and Signal Processing, under
review.

12 D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. (2024).
doi:10.48550/ARXIV.1412.6980



https://doi.org/10.1177/0954409720986661
https://doi.org/10.1016/j.ndteint.2023.102832
https://doi.org/10.1007/s11340-021-00691-z
https://doi.org/10.1007/s11340-021-00691-z
https://doi.org/10.1177/03611981231157726
https://doi.org/10.1080/09349847.2024.2433483
https://doi.org/10.3390/s22197447
https://doi.org/10.1016/j.ndteint.2023.102840
https://doi.org/10.1080/09349847.2023.2237446
https://doi.org/10.32548/2024.me-04384

	Piervincenzo Rizzo0F  and Matthew Belding1F
	EXPERIMENTAL SETUP
	RESULTS
	Conclusion
	References



