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ABSTRACT 
 

This short article describes one of the latest advancements of a 
monitoring/inspection technique for the estimation of localized longitudinal stress 
in continuous welded rails (CWR). The technique is based on the use of vibration 
measurements and machine learning (ML). A finite element analysis is conducted 
to model the relationship between the boundary conditions and the longitudinal 
stress of any given CWR to the vibration characteristics of the rail. The results of 
the numerical analysis are used to train a ML algorithm that is then tested using 
field data obtained by an array of accelerometers polled on the track of interest. The 
proposed technique was tested in the field. A commercial FEM software was used 
to model the rail track as a short rail segment repeated indefinitely and under 
varying boundary conditions and stress. A ML model was developed to infer the 
rail neutral temperature and the local resistance of rails to vertical and lateral 
displacement. The results of the experiments demonstrated that the success of the 
technique is dependent on the accuracy of the model and the ability to properly 
label the modes of the detected frequencies. This study builds upon previous 
research conducted at the University of Pittsburgh and the interested reader is 
referred to previous publications from the authors for more details about the 
proposed technique. 
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INTRODUCTION 

With the advent of high-speed rail and the increase of tonnage moved by freight 
transportation, the use of continuous welded rails (CWR) has increased 
significantly worldwide. The mechanical and dynamic behavior of a CWR is a 
function of the track resistance, rail temperature, misalignment, as well as other 
secondary variables. When the temperature TR of a given rail is above the so-called 
rail neutral temperature (RNT) TN, defined as the temperature at which the 
longitudinal stress is zero, the rail is subject to longitudinal compression. When the 
compressive stress become extreme, buckle may occur. This leads to the need for 
reliable ways to estimate longitudinal stress and RNT. Current state-of-the-art 
methods are mostly invasive and target the measurement of longitudinal stress from  
which the RNT is estimated using a simplified well-known relationship. 

The rail cutting method consists of cutting the rail at cold temperatures and 
measuring the gap (the rail opening) between the opposite faces at the cut [6]. The 
longitudinal stress is zero at the cut and progressively increases to the pre-cut stress 
values at a location that can be hundreds of meters away. Such force difference is 
denoted as the longitudinal force profile and the length of the rail having reduced 
internal longitudinal force is referred to as the influence zone. VERSE® [7] is a 
static semi-invasive method that links the axial force to the vertical force required 
to lift 30 meters of unanchored rail by a certain amount.  

Over the last three decades nondestructive evaluation (NDE) methods based on 
electromagnetism, ultrasounds, acoustics, high-frequency vibration, and optics have 
emerged, and most of these methods were thoroughly reviewed by Enshaeian and 
Rizzo [1] and Huang et al. [2]. 

Vibration-based methods are one of the earliest approaches ever proposed. They 
are based on the physical evidence that longitudinal stress alters the natural 
vibration frequencies and modal characteristics of beams and beam-like structures, 
including CWR. However, any vibration-based monitoring system faces a critical 
challenge: the effect of the boundary conditions. In CWR, the vibrations are not 
solely influenced by axial loads but by other factors, such as fasteners, sleepers’ 
materials, distance between consecutive crossties, and environmental variability. 
These factors add complexity to an already challenging problem. 

To address these challenges, Machine Learning (ML) has emerged as a 
powerful tool to identify the complex patterns and relationships within data, making 
them well-suited to account for the multifactorial influences on rail vibrations. Over 
the last few years, our team has developed a NDE technique based on the 
measurement of low-frequency (< 1 kHz) rail vibrations, and the computation of the 
corresponding power spectral densities (PSD) to train a machine learning algorithm 
(MLA) to predict the RNT [3-10] Those works focused on the experimental 
verification of the research hypotheses in the laboratory and in the field, as well as 
on the development of the MLA trained and tested with the experimental data.  

The study presented in this article summarizes latest developments especially 
related with the development of a wayside installation system designed and tested 
to allow for frequent measurements and monitoring of any railroad track without 
interfering with normal train operation or maintenance activities. In this study, the 
deep learning strategy was validated by using data collected during three field visits 



and 11 days of testing at two controlled loop facilities in Pueblo (CO) in 2021, 
2022, and 2024, and then blindly tested at three revenue service lines. Finally, the 
experimental campaign conducted in Pueblo and at the revenue service lines in 
2024 are reported in this paper for the first time.  

  

EXPERIMENTAL SETUP 

This section briefly describes the three test setups deployed in Colorado. More 
insights about the field visits in 2021 and 2022 are available in [4,5,7-10]. 

Three test days were conducted in May 2021 at the FRA Transportation 
Technology Center (TTC).  The first two days were on a 5° curved RE 141 rail on 
concrete ties while the third day was on a tangent RE 136 wood-based section. Two 
tri-axial PCB 356B08 wired accelerometers were bonded to the gage side of the rail 
head on the midspan and above the crosstie. The accelerometers were sampled at 10 
kHz and triggered manually with an instrumented hammer used to induce a lateral 
impact on the field side. Two K-type thermocouples were attached to the head and 
web of the rail. The setup required a signal conditioner, an oscilloscope, and a 
power supply. TTCI instrumented the rails with strain gauge rosettes and 
temperature sensors to provide the true RNT. 

Approximately one year later, four days were spent at the same facility with 
several improvements to the setup. The same PCB accelerometers sampling at 10 
kHz were paired with two wireless (WL) LORD G-Link-200-40G sensors sampling 
at 4096 Hz. The wireless signals were zero-padded to match the frequency 
resolution of 0.1 Hz. The wired and the WL sensors wireless counterparts were 
attached to the rail using permanent magnets. The instrumented hammer was 
secured to a motor-operated arm, which acted as a pendulum, to improve the 
repeatability of the impacts. 

Figure 1 – Close-up view of the new wayside system. 
 

The newest field test at a controlled facility was conducted at the FAST Loop, a 
new site built and operated by MxV Rail. Our setup consisted of a non-intrusive 
wayside system (Fig. 1) designed to enhance repeatability, increase the number of 
hourly measurements, reduce footprint, allow for remote operation, minimize cost, 
and to limit track closure to the time needed for installation and removal. In the 



study presented here, three hits per minutes, i.e., 180 impacts per hour, was 
selected. Four days were spent onsite. Two wayside units were deployed about 5.6 
m (220 in.) apart on the field side of the track, and each unit was paired to two WL 
sensors identical to those used in 2022. The setup included a power generator, a 
laptop to communicate with the sensors and to receive the signals from them, and 
two thermocouples attached to the head and web to measure rail temperature.  

The rail temperature and the RNT estimated by MxV across the four days of our 
field visits. Based on such readings, the rail was nearly always in tension as TR was 
below TN. The only exception occurred in the early afternoon hours during the 
second day of testing when TR > TN (strain gage #3).  

Table 1 summarizes the test conditions including the number of signals 
collected during the three field visits and the 11 days of testing. One of the most 
evident improvements over the years, has been the number of waveforms collected 
(see rightmost column of the table). The first time 179 signals were collected. One 
year later, the samples were 1,457, whereas the most recent setup configuration 
enabled the acquisition of 4,454 signals. The other significant transformation is the 
simplification of the setup and the deployment of a truly non-intrusive monitoring 
system that would not interfere with and would not be affected by regular passenger 
or freight train operation.  

 
Year # of 

days Alignment RE Tie 
material 

Sensor 
type 

Impact 
locations Site # of 

signals 
2021 1 Tangent 136 Wood Wired One (manual) TTC 70 
2021 2 5° curve 141 Concrete Wired One (manual) TTC 109 

         

2022 2 Tangent 136 Wood Wired and 
WL One (pendulum) TTC 512 

2022 2 5° curve 141 Concrete Wired and 
WL One (pendulum) TTC 945 

         
2024 3 Tangent 136 Wood WL Two (impactor) FAST 3075 
2024 1 Tangent 136 Wood WL Two (impactor) FAST 1379 

  
 

Table 1 – Summary table of the instrumented rails tested in Pueblo (CO) in years 2021, 2022, and 
2024. Note: WL = wireless. 

 
 

RESULTS 

The use of the wireless accelerometers and the automatic nature of the impact 
mechanism bring the potential risk of false positives/negatives. In the present 
context, false positives are waveforms accidentally recorded by the sensors and 
unrelated to any individual strike of the rod. False negatives represent vibrations 
triggered by the rod but not recorded by the sensor(s). As such, the raw waveforms 
were post-processed (data cleansing) to remove false positives, and to identify and 
eventually remove outliers generated by unwanted interferences. Details about such 
filtering procedures were presented in [11] and are not repeated here for the sake of 
space.  

The developed MLA architecture consisted of a 1DCNN designed to use only 
the normalized frequency spectrum of the vertical and lateral components of the 
vibrations. The deep learning approach benefits from the ability of the convolution 
operation to automatically extract relevant spatial features in the frequency domain 



when mapping to a target value, in this case rail neutral temperature, which is 
contrary to which utilized the entire PSDs for the feature space. This hierarchical 
approach is commonly used in computer vision and large language applications to 
learn relative features for systems that cannot be modelled easily. Additionally, 
removal of the rail temperature allows for one less measurement for this technique. 
Details about such filtering procedures were also presented in [11] and are not 
repeated here for the sake of space.  

To avoid overfitting, the best validation loss was monitored using the Mean 
Squared Error (MSE), defined as: 

          (1) 

where, Yi is the true RNT, Ŷi is the predicted RNT, and n represents the 
number of samples. MSE calculates the mean square residual error between the 
predicted value and target, where the square assists in penalizing larger residual 
predictions. A period of 200 epochs was used to train alongside a validation split of 
15% and test split of 50%. MSE was used as the loss function for training while the 
Mean Absolute Error (MAE): 

      (2) 

was used for validating the model because this value measures the mean 
absolute residual error between the predicted value and target without penalizing 
outliers like the MSE.  

Adam was chosen as the optimizer with a learning rate of 0.01 given its 
adjustable learning rate and faster convergence [12]. Additionally, weights were 
adjusted every 64 signals by using a minibatch size of 64.  

Three analyses were conducted. In the first analysis the deep learning model 
was trained using 2021 and 2022 data to estimate the RNT at the TTC tracks. The 
same trained model was then used to estimate the RNT of the MxV FAST loop 
track. In the third analysis the model was trained using data from all 11 days on the 
field to estimate the RNT at both field sites. The results from this latter analysis are 
presented here.  

The deep learning model was trained by randomly selecting 50% of the data 
from each sensor and each of the 11 days in the field. The same validation split of 
15% in the training set was used. The results are presented in Fig. 2 and shows the 
predicted RNT against the true RNT estimated with the strain gages. The bisector 
indicates the ideal case of a perfect match whereas the two dashed parallel lines are 
±2.78 °C (or ±5 °F) distant from the ideal bisector and represent a desirable 
accuracy. The MAE associated with all the years is presented as well. The figure 
demonstrates how well the MLA was able to estimate the RNT.  



 
Figure 2 – RNT calculated from a strain gage rosette vs the RNT predicted with the MLA. The 
dashed lines indicate ±2.78 °C offsets from the bisector. 50% of the cleansed data from each day was 
used for training and the remaining 50% was used for testing. The mean absolute error (MAE) was 
calculated according to Eq. (2).  

 
 

CONCLUSION 

This brief article presents one of the latest advancements of a vibration-based 
method to monitor CWR with the purpose of estimating the RNT and then inferring 
the longitudinal stress. The principal novelty of the paper is the design and testing 
of a compact device for the excitation of local vibrations in the rail. The compact 
device allows for more repeatable results of several new field tests conducted using 
a novel NDT method to determine RNT. A newly designed impactor allows for 
conducting measurements at any location without closing the track for more than a 
few minutes and without requiring personnel on the track. Moreover, the device is 
entirely non-invasive, as demonstrated by active trains running over the track 
during revenue service field testing. The latest MLA based on deep learning 
eliminates the need to measure the rail temperature. However, it was still measured 
and collected for potential future developments as changes in RNT have been 
observed to be heavily influenced by rail temperature. This has further confirmed 
that the RNT can be measured with low frequency information but will require 
exposure to more track conditions to generalize. With the advent of significantly 
increased data collection from the new device, a new cleansing strategy was 
implemented to reject outliers, which will have positive implications for future 
applications involving moving vehicles.  

Owing to the scope of this article, the interested readers are referred to paper 
[11] for more insights about the setup and results of the study briefly presented 
here.  
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