
Research on Modal Identification of High-
Speed Maglev Guideway Structure Based 
on Data Fusion and Genetic Algorithm 
 

JINGYU HUANG*, ZIYANG ZHANG, XIAONONG WANG 
and YUHAO ZHENG 

 
 

ABSTRACT 

 
High-speed maglev guideway structures are an important part of high-speed 

maglev transportation systems. A precise and efficient modal identification method 
for guideway structures is proposed to study the dynamic characteristics of high- 
speed maglev systems. Ensuring the safety of high-speed maglev transportation 
systems is of great significance. Taking the high-speed maglev guideway structure 
as the research object, this paper proposes a method for optimizing the sensor 
arrangement based on a genetic algorithm and a method for identifying the multi- 
order modes of the guideway structure based on data fusion. By optimizing the 
arrangement of the piezoelectric acceleration sensors and fiber Bragg grating sensors, 
data on the various dynamic characteristics of the high-speed maglev guideway 
structure under the excitation of high-speed maglev trains were obtained. The 
multimode characteristics of the high-speed maglev guideway structure were 
identified using the natural excitation technique and eigensystem realization 
algorithm through the fusion of multisource data of different types of dynamic 
characteristics in this study. The effectiveness of the proposed method is 
demonstrated by comparing the results of modal identification in different situations, 
for instance fusion of multi-source data. The research results indicate that the 
optimization of the arrangement scheme of sensors of high-speed maglev guideway 
structures based on genetic algorithm can effectively reduce the number of sensors 
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on the premise of ensuring the accuracy of modal identification results, and multi-

source data fusion can significantly improve the accuracy of modal identification of 

the guideway structure, which proves the efficiency and accuracy of the methods 

proposed in this paper. The research results can provide effective methods for 

optimizing the sensor arrangement scheme for testing the dynamic characteristics 

and analyzing the dynamic characteristics of high-speed maglev guideway 

structures. 

INTRODUCTION 

High-speed Maglev transportation is a new direction for rail transportation 

development, and accurate identification of the guideway modal is important for 

the health monitoring of high-speed maglev systems. Common modal 

identification algorithms include the stochastic subspace identification method 

(SSI), random decrement method, natural excitation technique (NExT), time-

series analysis technique, and eigensystem realization algorithm (ERA). The ERA 

is one of the most widely used algorithms for modal identification, with a small 

computational cost [1]. 

Li et al. used NExT-ERA to identify the modal parameters of the Tsing Ma 

Bridge [2], which proved the feasibility of this method for large bridges. Ye et al. 

used the stability diagram method to obtain the modal parameters of a cable-

stayed bridge and eliminated spurious modals [3]. Dong et al. used the harmonic-

modified random subspace method to identify the dynamic modal parameters of 

an offshore wind-turbine structure [4]. Guo et al. identified the modal parameters 

of suspension bridges based on data obtained from a health-monitoring system 

and investigated the relationship between the damping ratio and wind speed by 

calculating the modal damping of suspension bridges at different wind speeds [5]. 

Niu et al. used a hybrid method of complementary empirical modal 

decomposition and stochastic subtraction techniques using GNSS and real-time 

dynamic measurement data to identify the intrinsic frequency and damping of 

multi-span bridges with respect to their inherent frequencies and damping ratios. 

Most of the aforementioned studies only identified the frequencies and damping 

ratios of the structure without the modes [6]. Zhang and Huang used the NExT-

ERA to identify the modal parameters and mode shapes of a maglev guideway 

[7]. However, the study was designed for sufficient sensors, which led to a higher 

testing cost. When performing structural health monitoring, it is usually desirable 

to obtain more modal data of the structure with fewer sensors. However, arranging 

fewer sensors can lead to difficulties in restoring the complete mode shapes. In 

this paper, a method is proposed to identify the modal parameters and mode 

shapes of a structure based on reconstructed response data, which can accurately 

obtain the modal parameters and mode shapes with fewer arranged sensors. 

The purpose of this study is to accurately identify the modal state of a high-

speed maglev guideway and to establish the basis for the structural health 

monitoring of high-speed maglev guideway system. Based on the parameters of 

the high-speed maglev guideway, a finite element (FE) model was established to 



obtain the modal matrix and eigenvalue matrix. Then, the Fisher information 

matrix of the guideway is obtained, and the key degrees of freedom (DOFs) of the 

relevant modalities are extracted using a genetic algorithm (GA) to maximize the 

fitness function and obtain the optimal sensor arrangement scheme. According to 

this scheme, a high-speed maglev guideway dynamic response field test was 

performed to obtain the acceleration and strain data using acceleration sensors 

and fiber Bragg grating (FGB) sensors. The excitation identification Kalman 

Filter (EIKF) method was used to fuse the data and reconstruct responses. Based 

on the reconstructed response, the NExT-ERA method is used to obtain the modal 

parameters and mode shapes of the guideway. The reliability of the method was 

verified by comparing the modal identification results based on raw and 

reconstructed data. 

OPTIMIZATION AND MODAL IDENTIFICATION METHODS 

In the field test, the number of sensors and their arrangement had a 

significant influence on the modal identification results. Typically, it is expected 

that a comprehensive and accurate structural parameter can be collected with as 

few sensors as possible under the influence of environmental noise, and the modal 

test results are robust and visible. However, in practice, as the number of sensors 

decreases, it becomes difficult to obtain the complete and accurate mode shapes 

of the structure. Although the sensors can collect the frequency signals of some 

mode shapes, it is difficult to reconstruct the complete mode shapes owing to the 

lack of test sites. 

Optimization of Sensors Arrangement 

Optimize the sensor arrangement based on the GA and effective independent 

effective independent (EI) algorithms. First, a group of individuals was generated 

to form the initial population, and the individuals were evaluated using the fitness 

function. The individuals are then crossed and mutated by genetic operators to 

generate a new population. Finally, the genes are selected by comparing the fitness 

values, so that genes with high fitness can be developed until finally converging 

on the optimal individuals. When optimizing the sensor position, individuals must 

be coded in the form of dualistic coding to accomplish crossover and mutation. 

The DOFs are selected through GA to maximize the two-norm of the Fisher 

information matrix, at which point the position corresponding to the set of DOFs 

is the best position for the sensor arrangement [8]. 

Establish the FE model of 

the Guideway

Fisher information matrix：
A0=ΦTΦ 

Effective independent 

vectors：E=Φ[ΦTΦ]-1ΦT

Using GA to find the 

optimal arrangement to 

make ：max f = ||ΦTΦ||

 

 

Figure 1. Sensor arrangement optimal process 

 



Data Fusion and Response Reconstruction Based on Kalman Filtering 

The Kalman filter uses a state-space model of a linear stochastic system 

consisting of state transfer and observation equations to describe the filter, and 

the effects of measurement and system errors are considered in the process. The 

recursive nature of the state equations is used to obtain the optimal estimates of 

the state variables with a minimum variance unbiased estimation criterion. The 

state vector of the system is derived based on the optimal estimation of the state 

variables of the system at each moment of the recursive process, and the structural 

response can be reconstructed from the state vector. When the excitation is 

unknown, an excitation identification Kalman filter (EIKF) can be used to 

estimate the external excitation and then reconstruct the structural response 

[9][10]. The EIKF process is as follows. 

Eigensystem Realization Algorithm 

ERA is a method that determines the minimum implementation of a system 

using test data. First, a Hankel matrix is constructed based on the test data. Then, 

a singular value is obtained by decomposing the Hankel matrix to determine the 

system matrix, control matrix, and output matrix. Finally, eigenvalue 

decomposition of the system matrix is performed to accomplish modal 

identification [10]. 

SENSOR ARRANGEMENT OPTIMIZATION AND IDENTIFICATION 

Sensor Arrangement Optimization Based on GA 

An FE model was established according to the parameters of the guideway, 

as shown in Figure 3. The modal and eigenvalue matrices of the guideway are 

obtained according to the FE model. Then, the Fisher information matrix is 

constructed by selecting the first 7th order modal of the structure, as follows: 
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Figure 2. Process of EIKF 

 

Figure 3. FE model of guideway  
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The number of sensors was set to seven, and the structural DOFs were 

selected by the GA. 

 
2

max  Tf =    (2) 

The optimization process is illustrated in Figure 4. The optimal fitness of the 

population was achieved after approximately 30 iterations, and the optimal sensor 

arrangement is shown in Figure 5 and Figure 6. During the test, the FGB sensors 

were arranged at the corresponding positions of the acceleration sensors for the 

structural response reconstruction. A laser displacement sensor was added at the 

mid-span to verify the reconstructed response. 

Data Fusion and Response Reconstruction 

Figure 7.(a) shows the spanwise deflection of the structure calculated by the 

conjugate beam method based on the strain data. The displacement data obtained 

by this method are more complete with the low-frequency part, but the high-

frequency noise is larger, which is not suitable for direct use in modal 

identification. Figure 7.(b) shows the midspan deflection obtained by secondary 

integration, which is not suitable for obtaining the midspan deflection because the 

results are significantly influenced by low-frequency noise. Figure 7.(c) shows  

 
 

 

 

 

Figure 4. Variation of maximum fitness 

with iteration 

 

Figure 5. Sensor arrangement 

   

 

Figure 6. Field test 

 

    

(a) (b) (c) (d) 

 

Figure 7. Mid-span deflection. (a) Based on strain data. (b) Based on acceleration data. 

(c) Based on reconstructed data. (d) measurement with laser displacement sensors 
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the mid-span deflection of the reconstructed response, which has a more 

reasonable displacement trend in the low-frequency part, and the signal retention 

in the high-frequency part is also more complete. The method can be used to 

obtain both the deflection and modal.  

Comparing the mid-span deflection obtained by the reconstruction response 

and laser displacement sensor, the maximum value of the reconstruction response 

was 1.710 mm, and the maximum value of the laser displacement sensor was 

1.696 mm. The difference is approximately 0.85%, which indicates that the 

response reconstruction has high accuracy. 

According to Figure 8, it can be seen that the reconstructed response is more 

consistent with the laser displacement sensor in the frequency domain range than 

the other methods. Although the displacement based on the acceleration data has 

richer frequency domain components, it is more affected by noise interference, 

and the overall frequency domain amplitude is more distorted because it needs to 

obtain the displacement by secondary integration. Although the FGB sensor has 

a good low-frequency data acquisition performance, almost all the details of its 

signal in the high-frequency component are lost. A comparison with the laser 

displacement sensor shows that the reconstructed response signal is reliable in 

both the time and frequency domains, and can be used for modal identification. 

Modal Identification Based on Reconstructed Response 

Based on the EIKF, the response of the structure at 17 locations was 

reconstructed. With the reconstructed responses as the input, the NExT-ERA 

method was used to obtain the frequencies and mode shapes of the structure, as 

shown in Figure 8. Table I and Table II Comparing the modal identification results 

based on the reconstructed response and the raw data, it can be seen that there is 

no significant difference between the two methods in the natural frequency, and 

the error of the first four orders of natural frequency is less than 3.1%, which 

indicates that the method is accurate, and the modal frequency identification 

results based on the reconstructed response are reliable. 

 

 

Figure 8. Frequency domain comparison of displacement signals generated by different 

sensors 

 



TABLE I. COMPARISON OF FREQUENCIES BASED ON DIFFERENT DATA 

 

Order of 

modes 

Natural Frequencies（Hz） 

Errors（%） Modes shapes based on 

reconstructed data 

Modes shapes based on 

raw data 

First 9.52 9.58 -0.63 

Second 38.07 37.60 1.25 

Third 85.67 86.04 -0.43 

Fourth 152.30 157.15 -3.09 

 

TABLE II. COMPARISON OF MODE SHAPES ON DIFFERENT DATA 

 

Order of 

modes 

Modes shapes  

based on reconstructed data 

Modes shapes  

based on raw data 

First 

  

Second 

  

Third 

  

Fourth 

  

When modal identification is performed directly from the raw data, the 

results may not reflect the true mode shapes of the structure owing to the lack of 

test sites, and the key peak points may be missed in some mode shapes, resulting 

in distorted shapes, such as the 2nd and 4th order mode shapes in Table II. By 

reconstructing the response for modal identification, missing critical points can 

be avoided, and higher-order mode shapes can more accurately reflect the real 

vibration of the guideway. 

CONCLUSIONS 

In this study, the sensor arrangement was optimized based on the GA. The 

data fusion and response reconstruction of the acceleration sensors and FGB 

sensors were performed by EIKF. With the reconstructed response as input, the 

NExT-ERA method was used for modal identification to obtain the natural 

frequencies and mode shapes of the guideway. The conclusions are as follows. (1) 

The optimization of the sensor arrangement is carried out by the GA, which can 

obtain more accurate modal parameters when the sensors are limited. (2) Using 

EIKF to reconstruct the response of the structure, the peak deflection in the mid-



span was 1.710 mm, which is only 0.85% different from that of the laser 

displacement sensor. The reconstructed data are consistent with the laser 

displacement sensor test results in the frequency domain. It is proven that the 

reconstructed data have high accuracy in both the time and frequency domains. 

(3) The modal identification results were compared based on the reconstructed 

and raw data. The difference between the first four orders of natural frequencies 

based on the reconstructed data and raw data was less than 3.1%. The 2nd and 4th 

order mode shapes are significantly better than the raw data, which proves that 

the modal parameter identification results obtained by the reconstructed response 

are reliable. The proposed method can be used to obtain more accurate mode 

shapes and improve the visibility of structural health monitoring. 
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