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ABSTRACT 

 
Extensive structural health monitoring (SHM) of civil infrastructure provides 

massive amounts of data that must be promptly and effectively analyzed through 
appropriate models to infer the health state of structures. In general terms, the health 
state of a structure can be expressed as its structural reliability with respect to the most 
significant limit states. When the reliability is estimated based on SHM data, the 
problem is typically solved numerically with iterative approaches, which are 
computationally expensive and do not allow early warning and prompt response. This 
work presents a logically consistent approach for the Bayesian estimation of structural 
reliability based on SHM observations. Moreover, it illustrates how closed-form 
solutions can be obtained using linear models and Normal random variables. The 
proposed approach can effectively evaluate the sensitivity of structural reliability with 
respect to SHM observations; this can be used as a novel performance index for 
monitoring systems. Finally, this paper proposes an application of this approach to a 
real-life case study, the crack opening monitoring of the Settefonti highway viaduct in 
Italy. 

 

INTRODUCTION 
 

There is a general agreement among researchers and infrastructure managers 
regarding the role of Structural Health Monitoring (SHM) in providing helpful 
information on the Structural Reliability of infrastructures. SHM aims to extract the 
damaged state of infrastructures from observations exploiting structural models. On the 
other hand, Structural Reliability aims to estimate the probability of failure of a given 
Limit State, i.e., a requirement a structure should satisfy during its service life. 

Demand from infrastructure managers for monitoring systems on structures, 
especially bridges, has increased over the last decades. Indeed, regulators are interested 
in improving the structural health state of bridges and upgrading inspection and 
monitoring procedures. Therefore, a scalable SHM framework is needed to handle the 
increasing amount of data and to provide timely the structural reliability. 
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To assess the reliability levels of infrastructures, it is necessary to obtain information 
about the structural health state based on SHM Observations using appropriate models. 
Bayesian updating of State Parameters based on SHM Observations is widely discussed 
in the literature [1], [2]. To better handle the probabilistic dependencies among the 
variables involved in the Bayesian frameworks, it is helpful to formulate the problem in 
terms of Bayesian Networks (BNs) [3]. BNs are a Probabilistic Graphical Model type 
that represents variables and their mutual correlations through a joint probability 
distribution. In the SHM field, relevant works regarding using BNs are [4], [5]. 

To summarize, several frameworks have been proposed for the Bayesian updating 
of structural reliability based on SHM data. Most of these use numerical solutions such 
as Monte Carlo simulation, MCMC, or Subset simulations. Other works use Gaussian 
Bayesian Networks (GBNs) [6], [7], which can offer direct solutions; however, GBNs 
can lead to errors due to the strong assumptions about the distribution of variables and 
the linearity of models.  

As mentioned, managers need prompt and scalable methods to assess infrastructure 
reliability based on SHM data. Existing numerical methods can be computationally 
inefficient; therefore, closed-form formulations should be reconsidered. This paper 
proposes a framework based on BNs for structural reliability analysis using SHM data. 
This framework provides a closed-form solution for structural reliability estimation 
based on the linearity of models and the Gaussian distribution of random variables. 
Finally, we propose an application of the framework to a real-life case study, the 
Settefonti highway viaduct in northern Italy. The application focuses on the crack 
opening limit state of the concrete. 

 
 

PROBLEM STATEMENT AND FRAMEWORK DEFINITION 
 

When a manager decides to install a SHM system on a structure, it aims to update 
the knowledge of its structural reliability. A SHM system is a network of sensors 
installed on the structure, which collects information about the configuration of the 
structure. Each sensor provides measurements of the observed physical quantities (e.g., 
displacements, rotations, temperatures). These measurements are adequately collected 
in the Observation vector 𝒚. From the Observations, the manager can infer the structural 
health state of the structure, represented by specific State Parameters (e.g., section 
stiffness, corrosion level of steel reinforcement); these are collected into the State 
Parameters vector 𝜽. Interpretative model 𝒚 = ℳ(𝜽) represents the relationship 
between the State Parameters and the Observations. 

The reliability assessment of the structure with respect to the desired Limit State 
involves specific parameters, which are collected in the Limit State Parameters vector 
𝒙. The Limit State Parameters are related to the State Parameters 𝜽 through the Analysis 
Model 𝒙 = 𝒜(𝜽). The Limit State Parameters are involved in the Limit State Function 
𝑧 = 𝒵(𝒙), which mathematically describes the desired Limit State.  

The Probability of Failure 𝑝௙ of a Limit State coincides with the probability that, 
given the probability distribution of 𝒙, the realization of the Limit State Function 𝑧 takes 
on a negative value. The failure probability 𝑝௙ is commonly evaluated by exploiting 
Second Moment Reliability Methods [8], where 𝑝௙ is defined in function of the 
Reliability Index 𝛽, i.e., the ratio between the mean 𝜇௭ and the standard deviation 𝜎௭ of 
𝑧.  



 
 

Figure 1. Framework for strutural reliability assessment based on SHM data. 
 
 

As the reader may know, given two systems with different Reliability Index 𝛽, the 
most reliable system is the one that holds the greatest value of 𝛽. 

By sequentially applying the models defined above, it is possible to express the 
Reliability Index 𝛽 as a function of the Observations vector 𝑦. This process is 
highlighted in Figure 1, which shows this process from left to right. 

Let us consider 𝜽, 𝒚, and 𝒙 as random variables (RVs); consequently, their 
relationship (represented in Figure 1) can be modeled as a directed, a-cyclic BN. In the 
following Sections, we present the framework formulation under the assumptions of 
linear models and Gaussian RVs. Then, we propose the framework application to the 
case of the Limit State of cracking in prestressed concrete beams. 
 
 
FORMULATION 

 
The framework defined above is based on the following assumptions: RVs are 

continuous (Hp1); RVs are Normally distributed (Hp2); RVs are interconnected by 
linear models (Hp3). Based on Hp1, the Observation 𝒚, the State Parameters 𝜽, and the 
Limit State Parameters 𝒙 are defined as vectors with real components. In addition, based 
on Hp2, their follows a Normal distribution 𝒩( ⋅ | 𝝁 , 𝚺 ), where 𝜇 and 𝚺 are the mean 
and the covariance matrix of the distribution, respectively. Depending on data 
availability, the variables 𝒚, 𝜽, and 𝒙 follow their prior probability distribution – before 
measurements are available, or their posterior probability distribution – after 
measurements are available. Finally, based on Hp3, these variables are connected by 
linear models – a linear combination of input parameters. 

Let us start with the State Parameters 𝜽: its prior distribution is described by its mean 
𝝁ఏ and covariance matrix 𝚺ఏ and do not depend on the structural configuration. Then, 
let us move on to the Observation 𝒚 and define the Interpretative Model ℳ(𝜽) as: 

 
𝒚 = 𝝁௬ + 𝐃 (𝜽 − 𝝁ఏ) + 𝒆௬ (1) 

 
where 𝐃 is the Sensitivity Matrix of the Interpretative Model, 𝒆௬ is the random error of 
the Interpretative Model, and 𝝁௬ and 𝝁ఏ are the mean of the prior distributions of 𝒚 and 
𝜽, respectively. The error 𝒆௬ includes model and measurement errors and is defined as 
a zero-mean multivariate Normal density function with covariance matrix 𝚺௬. 

The mean of the prior distributions of 𝒚 reads as: 
 

𝝁௬ = 𝒚଴ + 𝐃 𝝁ఏ (2) 
 
Let us move to the Limit State Parameters 𝒙 and define the Analysis Model 𝒜(𝜽) as: 



𝒙 = 𝝁௫ + 𝐀 (𝜽 − 𝝁ఏ) + 𝒆௫ (3) 
 
where, 𝐀 is the Sensitivity Matrix of the Analysis Model and 𝒆௫ is the random error of 
the Analysis Model, defined as a zero-mean multivariate Normal density function with 
a covariance matrix 𝚺௫ ∈ ℝ௄×௄. The mean 𝝁௫ of the prior distribution of 𝒙 reads as: 

 
𝝁௫ = 𝒙଴ + 𝐀 𝝁ఏ (4) 

 
In light of this, the BN defined in the previous Section becomes a GBN [9]. The 

GBN expressing the relationship between 𝜽, 𝒚, and 𝒙 to is shown in Figure 2. In this 
GBN, 𝒚 is an observed variable, while 𝜽 and 𝒙 are not observed and must be estimated. 
Moving from 𝒚 to 𝒙, we perform (i) probabilistic inference from 𝒚 to 𝜽 to determine 
the posterior distribution of 𝜽 given 𝒚; (ii) uncertainty propagation from 𝜽 to 𝒙 to 
determine the posterior distribution of 𝑥 given 𝒚. To solve these steps, we must define 
the prior precision matrices 𝚲ఏ, 𝚲௫ and 𝚲௬ – the inverse of the prior covariance matrices 
𝚺ఏ, 𝚺௫ and 𝚺௬ – which quantifies the level of accuracy of the respective variable. 

Let us start solving the BN by tackling the probabilistic inference step. Equation (5) 
shows the solution [9], [10], where 𝝁ఏ|௬ and 𝚺ఏ|௬ are the mean and the covariance 
matrix of the posterior distribution of 𝜽 given 𝒚, respectively. 

 

𝚺ఏ|௬ = ൣ𝚲ఏ + 𝑫் 𝚲௬ 𝑫൧
ିଵ

 ;  𝝁ఏ|௬ = 𝝁ఏ + 𝚺ఏ|௬ 𝑫் 𝚲௬ ൫𝒚 − 𝝁௬൯ ; (5) 
 
Now, let us tackle the uncertainty propagation step. Equation (6) shows the solution 

based on the theory of error propagation [9]. Here, 𝝁௫|௬ and 𝚺௫|௬ are the mean and the 
covariance matrix of the posterior distribution of 𝒙 given 𝒚, respectively. 

 
𝚺௫|௬ = 𝚺௫ + 𝐀 𝚺ఏ|௬ 𝐀்  ; 

 
𝝁௫|௬ = 𝒙଴ + 𝐀 𝝁ఏ + 𝐀 𝚺ఏ|௬ 𝐃்  𝚲௬ ൫𝒚 − 𝝁௬൯ ; 

(6) 

 
Regarding the reliability assessment, the Limit State Function 𝒵 depends only on 

the Limit State Parameters 𝒙; consequently, the reliability of the structure depends only 
on the distribution of 𝒙. Considering Hp3, 𝒵 is linear with respect to 𝒙 and defined as 
in Equation (7), where 𝑏଴ ∈ ℝ is the offset and 𝒃 ∈ ℝ௄ is the sensitivity parameter. 

 
𝑧 = 𝑏଴ + 𝒃்𝒙  ∈  ℝ (7) 

 
Since 𝑥 is a random variable, 𝑧 is a random variable too; and since 𝒙 follows a 

Normal distribution and 𝒵 is linear, 𝑧 follows a Normal distribution too, with mean 𝝁௭ 
and variance 𝜎௭

ଶ. When 𝒙 follows its posterior distribution, the mean and variance of 𝑧 
becomes 𝜇௭|௬ and 𝜎௭|௬

ଶ , respectively, and are defined as in Equation (8): 
 

𝜇௭|௬ = 𝑏଴ + 𝒃்𝒙଴ + 𝒃்𝐀 𝝁ఏ + 𝒃்𝐀 𝚺ఏ|௬ 𝐃்𝚲௬ ൫𝒚 − 𝝁௬൯ ; 
 

𝜎௭|௬
ଶ = 𝒃்  𝚺௫|௬ 𝒃 = 𝒃் 𝚺௫ 𝒃 + 𝒃்𝐀 𝚺ఏ|௬ 𝐀்𝒃 ; 

(8) 

 



 
 

Figure 2. GBN expressing the relationship between 𝜽, 𝒚, and 𝒙. 
 

 
Finally, we can express the Reliability Index 𝛽 as a function of 𝒚 based on Equation 

(7). Their relation is linear and is reported in Equation (9), where 𝛽଴ is the offset of the 
Reliability Index 𝛽 and 𝛁𝜷 is the Reliability Index Sensitivity. 

 
𝛽 = 𝛽଴ + 𝛁𝜷 ൫𝒚 − 𝝁௬൯   (9) 

 
In particular, 𝛽଴ is the value that 𝛽 assumes when the Observation 𝒚 is equal to 𝝁௬, 

while 𝛁𝜷 represents the variation of 𝛽 given a unit variation of 𝒚. Hence, the product 
between 𝛁𝜷 and 𝒚 returns the variation of the Reliability Index, Δ𝛽, given 𝒚. Equation 
(10) defines 𝛽଴ ∈  ℝ and 𝛁𝜷 ∈  ℝெ. 

 

𝛽଴ =
𝑏଴ + 𝒃்𝒙଴ + 𝒃்𝐀 𝝁ఏ

ට𝒃் 𝚺௫ 𝒃 + 𝒃்𝐀 𝚺ఏ|௬ 𝐀்𝒃

;       𝛁𝜷 =
𝒃்𝐀 𝚺ఏ|௬ 𝐃்𝚲௬

ට𝒃் 𝚺௫ 𝒃 + 𝒃்𝐀 𝚺ఏ|௬ 𝐀்𝒃

; 
(10) 

 
 
APPLICATION AND DISCUSSION 

 
In this Section, we discuss the application of the proposed framework to a real case 

study, the Settefonti highway viaduct in Italy. The Settefonti viaduct is an Italian 
prestressed concrete bridge part of the A1 highway between Bologna and Florence; it 
was opened to traffic in 1960. It consists of two structurally independent decks with a 
total length of about 300 m. The main spans are 85 m long and comprise two 
symmetrical prestressed concrete box girders supporting 50 m long prestressed concrete 
suspended girders. The box girders are 13.5 m long, between 3.6 m and 5.1 m high, and 
prestressed by 22 cables. Each cable consists of 12 wires with a diameter of 7 mm, and 
the average design tension is about 1050 MPa. The suspended span beams are 3.0 m 
high and prestressed by 9 cables with the same characteristics as above. 

As mentioned above, we apply the defined framework to the Limit State of crack 
opening in prestressed concrete beams (PCBs). The choice of this Limit State is due to 
these reasons: crack opening in PCBs is frequently monitored, and it is a clear sign of 
abnormal structural behavior; the Limit State is simple, so it allows to focus on the 
peculiarities and purposes of the methodology, rather than on the mathematical 
complexity of the formulation. 

Let us consider a simple monitoring system designed to measure the opening 
variation 𝛥ℓ of a pre-existing concrete crack (the Observation): a displacement 
transducer (e.g., a LVDT) connected to the concrete on the two sides of the crack as in 
Figure 3.  

 



 
 

Figure 3. Scheme of the monitoring system for concrete crack opening considered in the application. 
 
 
To estimate the overall crack opening width 𝑤. In this case, the overall crack 

opening width 𝑤 is both the State Parameter and the Limit State Parameter (𝑥 = 𝑤). To 
estimate 𝑤, we must know how much the crack has already opened, i.e., the initial crack 
opening ℓ଴. First, we explain the mathematical models which govern this Limit State, 
starting from the Interpretative Model ℳ, as reported in Equation (11): 

 
𝛥ℓ = ℳ(𝑤) = 𝜇௱ℓ + (𝑤 − 𝜇௪) + 𝑒௱ℓ  (11) 

 
where 𝜇௱ℓ is the difference between 𝜇௪ and ℓ଴ and 𝑒௱ℓ is the random error of the 
Interpretative Model. The error 𝑒௱ℓ is defined as a combination of the measurement 
error 𝑒௠, and the model error 𝑒ℓబ

, which depends on the uncertainty of the initial crack 
opening. Since the two model errors add up to each other, the variance of the Interpretive 
Model 𝜎௱ℓ

ଶ  sums 𝜎௠
ଶ  and 𝜎ℓబ

ଶ , which are the variance of the measurement and the initial 
crack opening, respectively. 

Since the Limit State Parameter 𝑥 coincides with the State Parameter 𝑤, we define 
the Limit State Function 𝒵 as in Equation (12), where 𝑤௟௜௠ is the maximum acceptable 
value of crack opening in the PCB. Note that this function follows the scheme in 
Equation (7), where 𝑏଴ is equal to 𝑤௟௜௠ and 𝑏 is equal to -1. 

 
𝑧 = 𝑤௟௜௠ − 𝑤  (12) 

 
Now, we can apply the formulation discussed in the previous Section to directly 

evaluate the Reliability Index 𝛽 as a function of the Observations 𝛥ℓ. The application 
of Equation (10) provides the offset 𝛽଴ and the Reliability Sensitivity Index ∇𝛽 of the 
Reliability Index 𝛽. 

 

𝛽଴ = √1 + 𝜆 ⋅
𝑤௟௜௠ − 𝜇௪

𝜎௪
 ;          ∇𝛽 = −ඨ

𝜆

1 + 𝜆
⋅

1

𝜎௱ℓ
 ; (13) 

 
Note that 𝛽଴ and ∇𝛽 are a function of the a-dimensional parameter 𝜆 = 𝜎௪

ଶ 𝜎௱ℓ
ଶ⁄ , which 

represents the ratio between the prior variance 𝜎௪
ଶ  and the variance 𝜎௱ℓ

ଶ . 
Finally, the application of Equation (9) provides the relation between the Reliability 

Index 𝛽 and the Observation 𝛥ℓ, as in Equation (14). 
 



𝛽 = 𝛽଴ + ∇𝛽 (𝛥ℓ − 𝜇௱ℓ) =
𝑤௟௜௠ − 𝜇௪

𝜎௪
− ඨ

𝜆

1 + 𝜆
⋅

𝛥ℓ + ℓ଴ − 𝜇௪

𝜎௱ℓ
 (14) 

 
Figure 4 shows the function of the Reliability Index 𝛽 of the Observation 𝛥ℓ 

considering, for instance, 𝑤௟௜௠ = 100 𝜇𝑚, 𝜇௪ = 40 𝜇𝑚, 𝜎௪ = 50 𝜇𝑚, ℓ଴ = 40 𝜇𝑚, 
𝜎ℓబ

= 25 𝜇𝑚, and 𝜎௠ = 10 𝜇𝑚 in Equation (14). Note that when the Interpretative 
Model uncertainty decreases, the Reliability Sensitivity Index ∇𝛽 increase (in modulus). 
Hence, besides being used in the reliability assessment, ∇𝛽 can also be used as an 
effectiveness index of a monitoring system. It quantitatively expresses the effectiveness 
of a SHM system in providing helpful information for the reliability assessment of the 
monitored structure. In other words, an index of the SHM system’s potential to provide 
Observations 𝑦 that induces a variation in the Reliability Index 𝛽. As a result, when 
infrastructure managers must decide which monitoring system to install among a set of 
different solutions, they can choose the one with the maximum value of ∇𝛽 (in 
modulus). Let us take a further step forward. We can write the square of Reliability 
Index Sensitivity as in Equation (15): 

 

∇𝛽ଶ =
𝜆

1 + 𝜆
⋅ 𝜎௱ℓ

ିଶ = 𝑔(𝜆) ⋅ 𝜎௱ℓ
ିଶ (15) 

 
where 𝜎௱ℓ

ିଶ is the inverse variance (i.e., the accuracy) of the monitoring system, while 
𝑔(𝜆) is a function of the a-dimensional parameter 𝜆 and is defined in Equation (16). 

 

𝑔(𝜆) = ∇𝛽ଶ ⋅ 𝜎௱ℓ
ଶ =

𝜆

1 + 𝜆
 (16) 

 
Note that when 𝜆 → 0 (i.e., problem only governed by the prior knowledge), 

𝑔(𝜆) → 0; consequently, the measurements cannot influence 𝛽 because ∇𝛽 → 0. On 
the other hand, when 𝜆 → ∞ (i.e., problem not influenced by the prior knowledge at 
all), 𝑔(𝜆) → 1; consequently, 𝛽 is only influenced by the Observations.  

 
 
 

 
 

Figure 4. Reliability Index 𝛽 function of Observation 𝛥ℓ. 
(a) with model uncertainty; (b) without model uncertainty (𝜎ℓబ

→ 0 𝜇𝑚). 
 
 



CONCLUSIONS 
 
Managers need general and scalable frameworks to be implemented on a large scale, 

which promptly provide the reliability of their infrastructures based on SHM data. The 
systematic use of existing numerical methods appears inefficient to fulfil this goal due 
to the enormous computational efforts they require. 

This paper formalizes a GBN-based logical framework for structural reliability 
analysis based on SHM observations. The assumptions conditioning the framework 
allow the reliability index to be written directly as a function of the SHM Observations 
through linear models and in closed form. This function allows for near real-time first-
level evaluation of the structural reliability of infrastructures. In addition, the Reliability 
Index Sensitivity – a parameter of this function – can be seen as a general, novel index 
for quantifying the effectiveness of an SHM system in providing information on 
structural reliability with respect to specific Limit States during the monitoring system 
design. The assumptions of this approach introduce limitations, which will be tested in 
future studies to have insight into their impact on structural reliability estimation. 

 
 

ACKNOWLEDGEMENTS 
 
This research has been supported Movyon SpA, Fondazione CARITRO Cassa di 

Risparmio di Trento e Rovereto (grant number 2021.0224), MIUR PON RI 2014-2020 
Program (Project MITIGO, ARS01_00964), ReLUIS Ponti 2021–2022 
‘Implementation of provisions of DM 578/2020’, and DPC-ReLUIS 2022-2024 WP6 
‘Monitoring and satellite data’. 
 
 
REFERENCES 
 
1. D. Straub and I. Papaioannou. 2015. “Bayesian Updating with Structural Reliability Methods,” J. 

Eng. Mech., vol. 141, no. 3. 
2. J. B. Nagel and B. Sudret. 2016. “A unified framework for multilevel uncertainty quantification in 

Bayesian inverse problems,” Probabilistic Engineering Mechanics, vol. 43, pp. 68–84. 
3. F. V. Jensen and T. D. Nielsen. 2007. Bayesian networks and decision graphs, 2nd ed. in Information 

science and statistics. New York: Springer. 
4. S. Mahadevan, R. Zhang, and N. Smith. 2001. “Bayesian networks for system reliability 

reassessment,” Structural Safety, vol. 23, no. 3, pp. 231–251.  
5. D. Straub and A. Der Kiureghian. 2010. “Bayesian Network Enhanced with Structural Reliability 

Methods: Methodology,” J. Eng. Mech., vol. 136, no. 10, pp. 1248–1258. 
6. M. Bensi, A. Der Kiureghian, and D. Straub. 2011. “Bayesian network modeling of correlated 

random variables drawn from a Gaussian random field” Structural Safety, vol. 33, no. 6, pp. 317–
332. 

7. M. Pozzi and A. Der Kiureghian. 2014. “Gaussian Bayesian network for reliability analysis of a 
system of bridges,” in Safety, Reliability, Risk and Life-Cycle Performance of Structures and 
Infrastructures, Eds., CRC Press, pp. 3083–3090. 

8. O. D. Ditlevsen and H. O. Madsen. 1996. Structural reliability methods. Chichester New York 
Brisbane J. Wiley & sons,. 

9. K. P. Murphy. 2013. Machine learning: a probabilistic perspective. Cambridge, Mass.: MIT Press. 
10. V. F. Caspani, D. Tonelli, F. Poli, and D. Zonta. 2021. “Designing a Structural Health Monitoring 

System Accounting for Temperature Compensation,” Infrastructures, vol. 7, no. 1, p. 5, Dec. 2021. 




