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ABSTRACT 
 

Frequent calibration of the dynamic characteristics of jack-up platforms are 
important for accurate evaluation of their safety and comfort to occupants. As jack-ups 
are large in scale involving many physical mechanisms and hydrodynamic coupling, it 
is challenging to rapidly optimize the estimation of system parameters and predict the 
dynamic responses under potential scenarios. This study develops a novel offline-online 
framework to address these issues. In the offline phase, a set of reduced basis functions 
is extracted from a collection of high-fidelity datasets, and the corresponding 
coefficients are employed to train neural network models. The online phase involves 
mapping model parameters to the coefficients of reduced basis functions using the 
trained neural network. The trained neural network combined with the reduced basis 
function is then utilized to predict dynamic response. The feasibility of the proposed 
method was evaluated through a numerical model of a jack-up under wave loads. The 
results indicate that the method is effective, robust, and promising for the rapid 
evaluation of large-scale structures. 
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Physics-based modeling and simulation have been widely applied in the field of 
offshore structures to compute their dynamic response and associated internal forces 
under diverse loading scenarios. Achieving high-fidelity solutions for offshore 
structures entails substantial computational burden [1] and becomes a challenge when 
speedy simulations and/or numerous repetitions are necessary. For example, real-time 
calculation is indispensable in predictive control, while structural reliability analysis 
demands thousands of repetitive computations. Therefore, it is imperative to develop a 
numerical model that can mitigate computational demand with minimal compromise in 
accuracy. 

Some studies focused on developing the surrogate model to replace the original 
high-fidelity model to achieve fast computation with good accuracy [2]. Such models 
employ mathematical equations or algorithms to map the input-output relationship of a 
given system. The most straightforward method to regress the input-output data is 
polynomial least-squares. However, its application is limited to simple systems. Another 
prevalent class of technique is projection-based model reduction, such as proper 
orthogonal decomposition (POD) and singular value decomposition (SVD), which 
approximate high-dimensional dynamic systems by employing a low-dimensional 
subspace. It has been successfully applied in the domain of fluid mechanics such as 
flow-field problems [3,4], and proven to be a useful technique for extracting salient 
features in complex systems.  

Recently, artificial neural network (NN) shows promising capability to capture the 
underlying nonlinear input–output relationship for fluid mechanics problems. Lee and 
Carlberg [5] developed a novel framework of deep convolutional autoencoder to reduce 
the dynamic systems into nonlinear manifolds. Kutyniok et al. [6] established upper 
bounds using Rectified Linear Unit (ReLU) NN to approximate the solution maps of 
complex partial differential equations. However, the NN model serves as black-box and 
lacks generalization beyond the training data employed.  

This work presents a model order reduction framework that combines the Reduced 
Basis and Neural Network (RB-NN) for time-dependent systems. A two-step POD 
algorithm is adopted to reduce the high-dimensional data matrices. An offline-online 
procedure is developed to facilitate real-time prediction, where the reduced order NN 
model is trained offline, and the field prediction using the trained model is performed in 
real time. A jack-up model subjected to wave loads is analyzed to demonstrate the 
accuracy and robustness of the proposed framework. 

 
 

2 FRAMEWORK OF RB-NN 
 

2.1 Reduced basis function using proper orthogonal decomposition 
 
The general equation for discrete dynamical systems under wave loading is 

described by 
 

!
!"
𝒙 𝑡 = 𝑓 𝒙, 𝒖, 𝑡                                                          (1) 

 
in which 𝑓 represents the nonlinear system, 𝒙 is the state vector, 𝑡 is the time step, and 
𝒖 is the external force. 



To obtain the structural response, Equation (1) can be integrated using a time-
stepping algorithm, 

 
𝒙 𝑡 + Δ𝑡 = 𝒙 𝑡 + 𝑓 𝒙, 𝒖, 𝜏 𝑑𝜏"-."

"                       (2) 
 

where Δ𝑡 is the chosen time interval. 
Based on Equation (2), the high-fidelity structural response at all the number of 

degree of freedoms 𝑁! at time step 𝑡 for a specified realization of the parameters 𝓟 1  
can be computed. The responses at time 𝑡2, 𝑡3,⋯ , 𝑡56 can be put in matrix form as   

 

  𝐗 𝓟 8 =

𝑥 𝑁2, 𝑡2 		𝑥 𝑁2, 𝑡3 	⋯ 		𝑥 𝑁2, 𝑡56
𝑥 𝑁3, 𝑡2 		𝑥 𝑁3, 𝑡3 	⋯ 		𝑥 𝑁3, 𝑡56

⋮														⋱																				⋮
𝑥 𝑁!, 𝑡2 		𝑥 𝑁!, 𝑡3 	⋯ 		𝑥 𝑁!, 𝑡56

                   (3) 

 
where 𝐗 𝓟 8 ∈ ℝ5?×56 , 𝓟 = 𝓟 2 ,⋯ ,𝓟 1 ,⋯ ,𝓟 5A ∈ ℝ5B×5A  denotes 
parameter space, ND is the number of parameters, NE is the total number of realizations. 
𝐗 𝓟 8  can be rearranged into a column vector 𝐘 G  of size NHNI×1. A collection of 
high-fidelity solution for all parameters is denoted by  
 

𝐘 = 𝐘 2 , 𝐘 3 ,⋯ , 𝐘 5A ∈ ℝ5?56×5A                           (4) 
 

Conceptually, 𝐘 can be reduced by projecting onto a low-dimensional space based 
on SVD 

 
𝐘 = 𝐔𝚺𝐕𝑻                                                (5) 

 
where 𝐔  and 𝐕  are orthogonal matrices, 𝚺 = diag 𝜎2,⋯ , 𝜎T, 0,⋯ ,0	  is a diagonal 
matrix with singular values, and subscript 𝐴 is the rank of 𝐘. The matrix of reduced 
basis vector is denoted as 𝚽X = 𝝍2,⋯ ,𝝍X ∈ ℝ5?56×Z,  where 𝑅 is the number of 
reduced basis (also known as the number of POD modes). 𝑅 can be determined by  
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≤ ϵEfg                                           (6) 

 
where ϵEfg is the tolerable relative error. Using 𝚽X, Y can be reformulated as  
 

𝐘 = 𝚽X𝜶𝒀                                              (7) 
 
where the associated coefficients, 𝜶𝒀  ∈ ℝZ×56 , can be obtained from 𝚽X  and 𝐘 
through the pseudo-inverse.  

For large-scale structures with large number of time steps considered, the dimension 
of 𝐘 is so large that the POD algorithm may not be directly applied to decompose the 
data because the operation of SVD for large matrix is expensive. To overcome this, a 
two-step POD algorithm is used. First, POD is performed on the response for each 



realization 𝐗 𝓟 8  (see Equation (3)), from which a matrix of r reduced basis vectors 
𝝌k𝓟

8  can be obtained. In order to have a common set of reduced vectors for all 
realizations, 𝝌k𝓟

8  for all k can be assembled as 𝕋 = 𝝌r
𝓟 1

	, 𝝌r
𝓟 2

	, ⋯ , 𝝌r
𝓟 𝑘  to perform 

another SVD operation.  This will yield one common reduced space, represented by 
𝚽 = 𝝍2,𝝍3 	⋯ ,𝝍X ∈ ℝ5?×Z where R is the number of reduced basis for 𝕋. The 
associated coefficients matrix 𝜶1for each k can be determined via pseudo-inversion. 

Hence, the above will yield NE sets of (𝓟 1 , 𝜶1) which will form as input and 
output pair for training the NN model  

 
2.2 Neural network model to estimate reduced coefficients 

 
The objective of the NN model is to approximate a mapping function between the 

input parameters 𝓟  and the output reduced coefficients 𝜶 . A NN architecture is 
constructed with multiple layers that iteratively tune the NN parameters (i.e., weights 
and biases) to approximate the underlying mapping function. Specifically, the outputs 
of the 𝑙-th layer 𝒁t is related to the outputs of the 𝑙 − 1 -th layer 𝒁tu2 by 

 
𝒁t = 𝜁 𝑾t𝒁tu2 + 𝒃t                                             (8) 

 
where 𝑾t and 𝒃t are the weight matrix and bias parameters for the 𝑙-th layer; and 𝜁 is 
the activation function. In this study, the ReLU activation function is utilized for all 
hidden layers and a linear activation function is employed for the output layer. The 
ReLU function, with 𝜒 as the input to the node, can be mathematically expressed as  
 

𝜁 χ = max 0, 𝜒                                                (9) 
 
For NN with 𝐿 number of hidden layers between the input and output layers, the 

resulting mapping function can be formulated as 
  

𝜶 = 𝜁~ 𝑾~, 𝒃~,⋯ , 𝜁3 𝑾3, 𝒃3, 𝜁2 𝑾2, 𝒃2,𝓟                  (10) 
 
where 𝓟 and 𝜶 are the input and output of the NN, respectively. 

The goal of the training process is to find suitable values of the parameters 𝑾t and 
𝒃t for 𝑙 = 1, 2,⋯ , 𝐿. This is accomplished through minimization of the loss function, 
where the mean square error (MSE) between the true data 𝜶 �  and the output of the 
NN 𝜶 𝓟  is defined as 

 
𝑪 = 2

��
𝜶 𝓟 − 𝜶 � 3��

��2                              (11) 
 
where 𝑪 is the loss function and 𝑁� is the number of samples. The ADAM (Adaptive 
Moment Estimation) optimization algorithm is employed to minimize the loss function. 
The process involves the gradients of the loss function with respect to the model's 
parameters, which are computed using the backpropagation method. 

Figure 1 depicts the proposed RB-NN method, which comprises four distinct stages: 
(a) collection of high-fidelity data and the construction of a set of reduced basis; (b)  



 
Figure 1. RB-NN framework. 

 
training of a NN model to tune the time series coefficients; (c) prediction of time series 
coefficients for new parameters using the trained model; and (d) prediction of field 
response at any given time via RB-NN. The stages (a) and (b) necessitate 
computationally demanding tasks to construct the low-dimensional subspace and train 
the coefficients of reduced basis arrays using NNs. These tasks are performed only once 
during the offline phase. In contrast, the online stage comprises stages (c) and (d), which 
enable efficient computation using the RB-NN model approximation for any new set of 
parameter values. 
 
 
3 REDUCED-ORDER MODEL OF JACK-UP PLATFORM 
 
3.1 Numerical model and data collection 
 

This section presents the development of a numerical model for performing 
hydrodynamic analysis of jack-up platform, to illustrate the proposed method. Figure 2 
shows the finite element model of the jack-up platform comprising a hull and three 
vertical legs. The hull was assumed to be a rigid body and modelled with some nodes 
connected by weightless rigid elements. To simulate the drilling units, a cantilever beam 
located at the aft end of the hull was modelled. The legs, on the other hand, were 
modelled using triangulated frame elements. Since the loading from the hull was 
transmitted to the legs through guides, spring elements were assigned between the legs 
and the hull. 

In order to account for the foundation fixity, spring elements were affixed between 
the legs and seafloor which enabled computing the overturning resistance provided by 
the spudcan. Additionally, the wave model was built based on the fifth-order Stokes 



  

Figure 2. Finite element model of jack-up 
platform developed in ABAQUS. 

Figure 3. Cumulative normalized singular values 
of first 100 modes. 

 
wave theory [7]. ABAQUS software [8] provided a predefined function for modeling 
Stokes fifth-order waves, which required three parameters: wave height (𝐻�), period of 
wave (𝜏� ) and phase angle 𝜃� . The time history of the structural response was 
computed using the explicit time-stepping procedure. 

The aforementioned full-order model served as a data generator for producing both 
the training and validation dataset. Specifically, two input variables, namely the wave 
height (𝐻�) and the phase angle 𝜃� , were randomly sampled within the uniformly 
distributed parameter space 𝓟 = 𝐻� ∈ 0, 0.62 , 𝜃� ∈ −1,1 	 	, yielding 300 pairs 
of realizations. These sets were then utilized as inputs for the full-order model, enabling 
the computation of the responses of interest, which in this study is the time history of 
displacement for all nodes. A total of 300 input-output pairs of synthetic data were 
collected for training and validating the RB-NN model. 

 
3.2 RB-NN model training and validation 

 
The 300 sets of data were randomly split into 240 sets for training the NN and 60 

sets for validation. To improve the stability and performance, the data were normalized. 
The training data was used to build the reduced basis in the POD phase. Figure 3 shows 
the cumulative normalized singular values with the number of modes. The increase in 
the cumulative normalized singular values was steep for the initial ten modes, after 
which a gradual asymptotic behavior towards 1 was observed. With a POD tolerance 
ϵEfg of 10u�, the first 91 POD modes were chosen to construct the reduced basis. 

The coefficients of POD modes extracted from the high-fidelity datasets were 
utilized for training the NN model. The NN comprised a solitary input layer, four hidden 
layers, each of which had 32 neurons, and a single output layer. The training of the NN 
was accomplished through minimization of the loss function in Equation (11), utilizing 
the gradient descent method, over 100 epochs. Figure 4 depicts the decay of the MSE 
value with respect to the number of epochs. The MSE values exhibited significant 
reduction during the initial 15 epochs, and subsequently reached a plateau around 100 
epochs, indicating that under-fitting did not adversely impact the training process. 
Furthermore, the MSE for both the training and validation datasets displayed a similar 
trend, implying that overfitting also did not occur. 

Figure 5 compares the outputs of the NN with the corresponding targets. The dashed 
line in each subplot represented the network is exactly equal to the target, while the solid 



 
 

Figure 4. Trend of MSE for train and 
validation datasets. 

Figure 5 Regression between outputs of NN and targets.  

 
line represented the best fit linear regression between outputs and targets. The R values 
obtained for the training and validation datasets were both greater than 0.98, indicating 
that the NN outputs closely align with the targets.  

Different reduced basis may also influence the accuracy of the RB-NN model. The 
tolerances for POD were set at ϵEfg = 10u2 , ϵEfg = 10u3 , ϵEfg = 10u�  and 
ϵEfg = 10u�, resulting in the corresponding number of POD modes as 𝑅 = 7, 𝑅 = 21, 
𝑅 = 55 and 𝑅 = 91, respectively. Upon successful training and validation of the four 
RB-NN models, new parameters were inputted to generate the dynamic responses. The 
relative error (𝜏 ) was utilized to evaluate the dissimilarities between the dynamic 
responses generated by the RB-NN model and the full-order model, given by 

 

𝝉 = 𝜶 𝓟 u𝜶 �

𝜶 � ,                                                      (12) 
 

where 𝜶 �  is the true data and 𝜶 𝓟  is the output of the NN. 
Figure 6 displays the box plots of relative errors for different numbers of POD 

modes employed where the bottom, central and top line of the green box represents the 
25th, 50th and 75th percentile errors, respectively, and the 'whiskers' represent the 
minimum and maximum errors. The results showed improvement in prediction 
accuracy with decreased median error as the number of modes increased from 7 to 91.  

 The computation times for the four RB-NN models are summarized in Table 1, 
based on a desktop equipped with Intel(R) Core(TM) i5-7400 @ 3.00 GHz CPU and an 
NVIDIA GeForce GT 730 GPU. The training time for NN was substantially greater 
than that for prediction. The training time increases exponentially as the number of 
modes increases, while the prediction time exhibited a linear increase. This trend 
illustrates the tradeoff between model accuracy and computational efficiency. 
 
 
4 CONCLUSION 
 

This paper presents a reduced-order-cum-NN model framework for dynamic 
response simulation of offshore structures. A two-step procedure was employed to 
efficiently extract the POD modes from data matrices to yield the reduced basis with 
specific tolerance error. The coefficients of POD modes were used to train and validate 
the NN model. Given the computationally intensive nature of the process, it was  
 



 

TABLE 1 COMPARISON OF 
COMPUTING TIME (UNIT: SECOND). 

Number of modes Training Prediction 

7 1854 1.30E-03 

21 4044 2.10E-03 

55 8442 3.80E-03 

Figure 6. Relative error for different number of 
modes used. 91 21006 5.60E-03 

 
 
executed offline. In the online phase, structural response can be predicted using the 
trained model with the given parameters.  

The offline-online framework was applied to a jack-up platform for the prediction 
of dynamic response. The results demonstrate that a well-trained surrogate model can 
accurately predict the structural response in almost real time. This method offers the 
advantage of constructing a surrogate model using a relatively small dataset. The 
constructed surrogate model can be further employed for parameter optimization and 
reliability analysis. 
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