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ABSTRACT 

In order to improve the efficiency and accuracy of corroded cracks detection and 
classification in reinforced concrete, a corroded cracks identification model Steel 
Corrosion Net (SCNet), based on deep learning Convolutional Neural Network (CNN), 
is proposed. The SCNet combines massive initial data with a multi hidden layer neural 
network framework, and achieves feature learning and accurate classification through 
model training. The data set of 39000 crack figures is firstly built by original data 
collection and data enhancement. The training process of the SCNet consists of defining 
the loss function, the selecting back propagation optimization algorithm, continuously 
entering data to the network framework and running back the propagation algorithm 
until the error drops to a certain range. Afterwards, a SCNet three-classification neural 
network model is built and tested using TensorFlow learning framework and Python. 
According to the training and testing accuracies of the model, the structure and 
parameters of the SCNet network are optimized. The results of SCNet are compared 
with those obtained by two traditional testing methods. The results show that the 
proposed SCNet model achieves a classification accuracy of 96.8%. In other words, it can 
effectively identify and classify the corroded cracks in reinforced concrete, with high 
accuracy and measurability. 
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1. INTRODUCTION 

 

The corrosion of steel bars in reinforced concrete structure usually causes 

volume expansion of steel bars, leading to the development of concrete cracks until 

the final concrete protective layer spalls off. This results in a structural damage and 

then reduces the bearing capacity[1]. Traditional surface crack monitoring due to 

reinforcement corrosion including high-power magnifier, inclinometer and crack 

measurement card, is regularly done manually[2]. However, these methods have some 

disadvantages such as poor safety, high cost and low efficiency. New technologies 

such as optical fiber, SEM, thermal imaging and ultrasonic[3], are also used in crack 

detection. However, these technologies also have their limitations. More precisely, 

they are not suitable for surface crack detection, and they are susceptible to 

environmental interference and costly. At present, several sophisticated structural 

health monitoring systems deployed in large buildings[4-5] require a large number of 

sensors, data collection system, and certain environmental compensation. With the 

development of image processing, several damage detection methods, based on 

computer vision, are used to study the concrete surface[6]. However, shortcomings in 

these methods exist, such as the lack of further classification, the poor light and the 

presence of noise. 

The deep learning algorithm, which is a type of machine learning, consists in 

constructing a neural network framework to perform learning on the initial data, 

training and learning the neural network framework through a large-scale data set, 

and updating the weights to extract features[7]. A Convolutional Neural Network 

(CNN) is a neural network based on deep learning, inspired by the visual cortex of 

animals[8]. It can efficiently capture the grid topology of the image as the basis for 

classification[9], which allows to efficiently perform image identification. 

In the past decades, several researches on Artificial Neural Network (ANN) have 

been carried out. However, they have recently been applied in image processing, such 

as crack identification in civil engineering. For instance, Cai[10] proposed a bridge 

crack video detection system using video image processing to make up for the 

shortcomings of the bridge crack detection technology. Landstrom et al.[11] proposed 

a method of automatic on-line detection of steel plate surface cracks based on three-

dimensional profile data, using morphological image processing and logical 

reasoning. Moon et al.[12] developed an automatic detection system which can analyze 

concrete surface and effectively identify visual cracks. In this method, cracks are 

identified and distinguished from the background image by filtering, improving 

subtraction and using morphological operations. 

The efficiency of cracks feature extraction was also improved using the Back 

Propagation (BP) neural network. Zhang[13] was the first to use deep learning for the 

crack detection of roads. Cha et al.[14] combined the trained CNN model with a sliding 

window technology to perform the detection and recognition of concrete cracks. 



 

 

However, the current deep learning CNN models can only identify cracks on the 

concrete surface, while they are not able to judge whether the cracks are belonging 

to the corrosion cracks. In this paper, the CNN is applied to identify and classify 

reinforced concrete corrosion cracks. A reinforced concrete corrosion crack 

identification model (SCNet), based on deep learning CNN, is proposed. The results 

verify the accuracy and measurability of the proposed model, which is able to identify 

the corrosion cracks of reinforced concrete in practical engineering applications. 

 

 

2. CNN THEORY 

 

CNN consists of structural layers such as the input layer, the hidden layers, the output 

layer, etc. The hidden layers include convolution, pooling, activation, full connection, 

Softmax and Dropout layers. Figure 1 shows the basic CNN framework diagram used 

for classification[15]. 

 
 

Figure 1. CNN framework of image classification 

 

This paper consists in building the SCNet model based on CNN theory. The 

basic concept consists in first summarizing the basic design rules of typical 

classification neural networks. That is, the order of input-convolution-pooling-full 

connection-output. The number of layers is then optimized using three convolutional 

layers to connect, and small convolution kernels to increase the receptive field. 

Finally, ReLU is used as activation function. It significantly improves the training 

efficiency and learning rate, and uses the dropout layer to deal with the overfitting 

problem, which makes the network have better generalization capacity. 

 

 

3. BUILDING DATA SETS 

 

In deep learning, several networks with high recognition rate benefit from their 

huge and real sample sets. Simultaneously, the accuracy and quality of image features 

directly affect the training and detection of the subsequent models. The construction 

of neural network data set mainly includes image data acquisition and data 



 

 

enhancement. The data set of the collected images is divided into three categories; 

reinforced concrete corrosion cracks, other causes of concrete cracks and complete 

concrete. Other causes of concrete cracks are mainly divided into plastic shrinkage 

cracks, structural cracks, temperature cracks and cracks caused by alkali aggregate 

reaction. Plastic shrinkage cracks refer to the irregular crack or parallel crack of 

concrete perpendicular to the longitudinal reinforcement. Structural cracks occur 

when the external load exceeds the bearing capacity of the concrete, and when no 

color change on the surface of the cracks exists. Alkaline aggregate reaction crack is 

caused by expansion and compression around the aggregate, which is characterized 

by surface concrete mesh cracking, besides transparent or yellowish gel precipitation. 

The main difference between the corrosion cracks of reinforced concrete and 

other causes of concrete cracks, is that the corrosion cracks have a unique color 

characteristic of reddish brown rust marks around the cracks and a full-length crack 

shape which is basically consistent with the direction of the longitudinal steel bar. On 

the other hand, other causes of concrete cracks are characterized by irregular cracking 

or mesh cracking besides transparent or yellowish gel precipitation. The data set 

includes a training set and a test set, with a data ratio of 4:1. 

 

3.1 Raw Image Data Acquisition 

 

Considering the accuracy and diversity of the sample set, three methods of 

network search, self-shooting and corrosion test are used to collect the original image 

data. In this paper, 1530 pictures are used, where 210 pictures are available online, 

540 pictures were taken by self-shooting, and 780 pictures were taken by corrosion 

test. In order to clarify the features of the picture data, this paper unifies the shooting 

standard of the picture data and sets the image acquisition standard. Firstly, the 

camera is taken perpendicular to the concrete surface in order to avoid geometric 

distortion. This also ensures that all the image data features are obtained in the same 

shooting environment. The shooting distance is also a crucial factor affecting the 

image quality. It determines the range of vision in the actual shooting. In order to 

clearly show the crack features in the image, a shooting distance of 20 cm is used. 

Illumination also has a large impact on the image features. The background of the 

image will highly change under natural light leading to uneven background 

brightness. In addition, self-shooting and network-searching methods are used. 

According to the shooting specifications, the self-shooting method can be taken in 

accordance with the shooting specifications, and is directly used to construct the data 

set. The images searched on the network may not meet the collection specifications. 

Therefore, they require scaling and brightness adjustments to meet the collection 

standards. The methods used to collect the original image ensured the diversity of the 

data. 



 

 

3.2 Data Enhancement 

 

In this paper, the data enhancement is performed using OpenCV random 

clipping, rotation and random color transformation. Note that the various functions 

provided by OpenCV can modify the picture to get more data. The effect of the 

rotation operation is shown in Figure 2  

Using random clipping, rotation and random change of the picture saturation 

and brightness, the effect of expanding the amount of data is achieved. In other words, 

one origin image can produce 30 image data. In the process of image selection, the 

final data set is obtained by eliminating some noise images with insufficient cracks 

and/or unsatisfactory brightness, as well as unifying the image size. Note that 80% 

(31200) off the data was used as training set, while 20 % (7800) was used as testing 

samples. 

 

 

4. IDENTIFICATION AND CLASSIFICATION OF CORROSION 

CRACKS 

 

In this paper, CNN is used to classify images with different concrete conditions. 

The data set is divided into three categories according to the characteristics of obvious 

rust marks around reinforced concrete corrosion cracks and long cracks along steel 

bars. The specific classification method consists in first adding the corresponding 

labels (0, 1, 2) to the training set samples according to three different classifications. 

Afterwards, through supervised-learning, these known data and their corresponding 

output label are trained, the parameters are adjusted, and an optimal model is obtained. 

This model is then used to map all the inputs of the unknown data to the 

corresponding output, output the corresponding label, and obtain the classification 

results. Finally, we get the network input, define the neural network framework 

structure, repeatedly modify the parameter training model, gradually reduce the result 

error, and test the performance of the model on unknown data.  

This paper splits the deep learning CNN into four independent programs: file 

input, forward propagation process, training part and testing part. This decoupling 

allows to modify each part independently, without affecting subsequent procedures. 

It also makes the whole process more flexible 

 

 

 

Figure 2 Rendering of rotation operation 



 

 

4.1 Building the Network Framework 

 

After optimization and adjustment, a SCNet model based on the classic 

classification neural network VGG16 is designed. VGG16 is used in several 

studies[15-16]. The model is composed of five large convolution layers and three fully 

connected layers. The large convolution layer includes small convolution layers and 

a pooling layer. The VGG16 model improves the network performance by increasing 

the neural network depth. The main characteristic of the model is that it uses a 3×3 

small convolution kernel and a 2×2 pooling window. It also increases the network 

depth to 16-19 layers. The network framework of the SCNet model is shown in Figure 

3. The model consists of an input layer, six large convolutional layers, three fully 

connected layers, a softmax classification layer and an output layer. The large 

convolution layer includes a convolution layer and a pool layer. The 1st, 2nd, 3rd and 

4th large convolution layer consist of three convolution operations with 32, 64, 128 

and 256 convolution kernels, for each convolution followed by one maximum 

pooling, respectively. The operation of the fourth and fifth convolution layers is the 

same. The sixth large convolution layer includes only one convolution layer. The size 

of all the convolution kernels is 3×3, the step size is 1, the pooling window size of 

the pooling operation is 2×2, and the step size is 2.  

 

4.2 Training and Testing of the Neural Networks 

 

The training process of the neural network consists of the content expression 

form of defining the loss function, the selecting back propagation optimization 

algorithm, continuously entering data to the network framework and running back 

the propagation algorithm until the error drops to a certain range. Figure 4 shows the 

 

 

Figure 3. SCNet network model sketch map 



 

 

 

 

 

Figure 4 CNN training process 

 

CNN training process. The first stage is the forward propagation which consists in 

calculating the input data and the final statistics error. The second stage is the back 

propagation which consists in propagating the errors of the actual output and the 

theoretical output, from high to low level. 

In order to improve the model training accuracy and optimize the model, the 

activation function and the dropout layer are added when constructing the neural 

network framework. The sliding average, the regularization loss, the back 

propagation optimization algorithm and the exponential attenuation learning rate, are 

also added to the training process. 

The testing process of the neural network model consists in letting the model 

determine which classification label (0, 1 and 2) the image data in the data set belongs 

to. It then compares the judged label with the real classification label, using the SCNet 

model. Finally, the accuracy of the SCNet model is obtained by counting the number 

of images with correct labels. Note that the training accuracy is the correct rate of the 

training set, while the test accuracy is the correct rate of the test set. This paper 

separates the test program from the previous programs so that the test program can 

be called as a subroutine during the training process. After each training epoch, the 

test program and the latest model are utilized to test the training set and test set, 

respectively. The training accuracy and test accuracy of the updated model are thus 

obtained. Finally, the next epoch is trained on the original model. 

  

4.3 Results Analysis 

 

Training the neural network is a very complex procedure, and it usually takes a 



 

 

long time (it may reach few days or weeks). In order to facilitate the debugging and 

the optimization of the neural network, a TensorFlow visualization tool (the 

TensorBoard) is used. This latter efficiently shows the composition of the calculation 

graph and the trend of some indexes over time. 

The executive process of the SCNet model is similar to the training process

（Figure 4）. Firstly, an unknown image with a size of 224×224×3 is used as input 

to the model. The image size changes to 112×112×32, 56×56×64, 28×28×18, 

14×14×256, 7×7×512 and 3×3×512, after the 1st, 2nd, 3rd, 4th, 5th and 6th large 

convolution layer, respectively. The size of the image then changes to 1×1×3 after 

three full-connection layers leading to three classifications. Finally, the image enters 

the softmax layer, and the probability for each corresponding classification is 

obtained. The state of the concrete surface from this image can then be identified. 

The efficiency of a neural network is determined by its performance on the test 

data, because its ultimate purpose is to judge the classification results of the unknown 

data. In this paper, the updated model is saved at each training epoch of the SCNet 

model. The model accuracies on the training set samples and the test set samples are 

verified and recorded. 

 

4.3.1 COMPARISION OF THE NETWORK MODEL RESULTS WITH 

DIFFERENT STRUCTURAL FRAMEWORKS 

 

A network structural framework is crucial for deep learning CNN. The number 

of hidden layers, the location of the convolutional pooling layer and the size of the 

fully connected layer affect the training accuracy and the test accuracy. Figure 5 

compares the SCNet model with classic classification neural network model VGG16, 

when all the network parameters and training hyperparameters are consistent.  

After comparing the performance of the two models on the data set, it can be 

seen that although the behavior is basically the same, the proposed SCNet model has 

a higher accuracy in both the training set and testing set. The proposed model reaches 

a training accuracy of 98.5% and a test accuracy of 96.8%. 

Moreover, this paper uses optimization methods, such as the moving average, 

activation function, exponential decay learning rate and regularization loss, in the 

training process. In order to investigate the efficiency of these optimization methods, 

we use the control variable method which consists in comparing the model in the case 

where all the optimization methods are used, and the case where one of them is 

excluded. 

 

4.3.2 COMPARISION OF THE NETWORK MODEL RESULTS WITH 

DIFFERENT TRAINING HYPERPARAMETERS 

 

The model hyperparameters cannot be directly estimated from the internal data 



 

 

and should be manually specified. There is no theoretical basis leading to the optimal 

value of the model hyperparameters. However, the optimal value of the model 

hyperparameters can be adjusted by the accurate results of the model's classification 

with empirical judgments, based on a large number of experiments. The 

hyperparameters of the proposed SCNet model include the initial learning rate, 

exponential attenuation learning rate, batch size, back propagation optimizer and 

number of epochs. 

Figure 6 shows the training accuracy and testing accuracy of several neural 

network models after 25 epochs of training on crack data set, when only one 

hyperparameter is changed. It can be seen that the initial model learning rate of 0.01 

has the highest accuracy when the initial learning rate is 0.8, 0.1, 0.05, 0.01 and 0.005, 

respectively. The model of batch size 32 has the highest accuracy when the batch size 

of the models is 24, 32, 48, 56 and 64, respectively.   
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a)  b)  

Figure 5. Comparison of the accuracy of two different structural frame models. a) 

Comparison of the training accuracy; b) Comparison of the test accuracy. 
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a) Initial learning rate b) Batchsize 

Figure 6. Comparison of the training accuracy and test accuracy for different neural network 

models with different training hyperparameters 

 

 



 

 

5. CONCLUSTION 

 

This paper proposed a SCNet three-classification neural network model for the 

classification of reinforced concrete corrosion cracks based on deep learning CNN. 

Compared with the traditional manual inspection methods, SCNet significantly 

improves safety by eliminating the need for inspectors to take field photos on high-

rise buildings or bridges. Moreover, the SCNet method does not require visual 

judgment or installation of several sensors. Therefore, it reduces cost, saves 

manpower and highly increases the detection efficiency and accuracy. The main 

conclusions of the paper are summarized as follows: 

1) Unified image data acquisition processes and shooting standards are set to 

make the features of the image data clear and explicit. This is convenient 

for subsequent neural network training and test classification. 

2) A concrete corrosion image recognition and classification model (SCNet) is 

built using TensorFlow and Python. By adjusting the neural network 

structure, using optimization methods and training hyperparameters, the 

SCNet model can distinguish the corrosion cracks of steel bars with an 

accuracy of 96.8%.  

3) The existing applications for concrete crack recognition based on 

conventional CNN, only perform the binary classification of the concrete 

conditions. On the contrary, the proposed model can identify intact 

concrete, concrete corrosion cracks and concrete cracks caused by any other 

reasons. Therefore, it can perform the triple classification of reinforced 

concrete cracks.  
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