
ABSTRACT 

Structural vibrations induced by human footsteps contain rich information that can 
be used for a wide range of applications, including occupant identification, localization, 
activity recognition, and health and emotional state estimation. Among these, emo- 
tion recognition holds great potential for improving smart buildings by enabling mental 
health monitoring and human-centric services. Existing emotion recognition approaches 
use cameras, wearables, and mobile devices to capture people’s changing gait patterns 
under various emotional states. However, these approaches come with corresponding 
drawbacks, such as being limited by visual obstructions and requiring users to carry 
devices that cause discomfort. 

To overcome these drawbacks, we introduce a new emotion recognition approach 
using footstep-induced structural vibration signals. The main intuition of this approach 
is that people’s gait patterns change under various emotions [1], thus inducing distinct 
structural vibration patterns as they walk. Compared to other methods, our approach is 
non-intrusive, insensitive to visual obstructions, and has fewer perceived-privacy con- 
cerns. The main research challenge in developing our approach is that emotions have 
both explicit and implicit effects on gait, making the explicit gait parameters insufficient 
to describe such a complex relationship. To this end, we develop a set of emotion- 
sensitive features from the vibration signals, including gait parameters, sequential fea- 
tures, and time-frequency spectrum features to capture both the explicit and implicit 
effects of emotion on gait. To better integrate multiple types of features, we develop the 
fully-connected layer, the long-short-term-memory (LSTM) layer, and the convolutional 
layer to extract information from the features and a multilayer perceptron to estimate 
emotion. Our approach is evaluated in a real-world walking experiment involving 5 par- 
ticipants with over 100 minutes of footstep-induced floor vibration signals. Our results 
show that our approach achieves a mean absolute error of 1.33 for valence score estima- 
tion and 1.26 for arousal score estimation out of an overall score range of 1 to 9, which 
has an accuracy of 72% for High / Low valence classification and 82% for High / Low 
arousal for emotion classification. 
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INTRODUCTION

Emotion recognition refers to the process of identifying human emotions, which has
significant and diverse applications, such as monitoring mental health and enabling smart
home devices to dynamically adjust their responses and functionalities to better accom-
modate the user’s emotional needs. It can aid individuals in identifying their emotional
states, potentially decreasing the risk of depression and anxiety [2]. It can also be used
to enhance recommendation systems in smart homes and smart building devices. By
being able to infer and interpret human emotions, smart homes and smart building de-
vices can better understand and respond to human behavior [3–5]. Additionally, emotion
recognition can help target emotion-based advertisements, resulting in more effective
and personalized marketing [6–8].

In recent years, researchers have utilized various aspects of human behaviors to rec-
ognize human emotions, such as facial expressions [9, 10], body language [11–14],
physiological signals (e.g., EEG, skin conductance) [15], and speech [16]. The sensors
used to capture these behaviors typically include cameras, wearable devices, mobile de-
vices (e.g., smartphones), microphones, and RF devices. However, each of these sensing
methods has its own limitations. For instance, cameras are susceptible to obstructions
and have limited viewing angles, which also raise privacy concerns. Similarly, micro-
phones can raise privacy concerns and require the subject to speak, and RF devices may
be blocked or absorbed by objects such as water or metal. Wearable or mobile devices
require subjects to wear or carry them, and devices that require electrodes to be attached
to the body, which may cause discomfort.

To this end, we introduce a new emotion recognition approach using footstep-induced
floor vibration signals. The main intuition of this approach is that people’s gait patterns
change under various emotions, thus inducing distinct structural vibration patterns as
they walk. Compared to other methods, our approach is non-intrusive, insensitive to vi-
sual obstructions, and has fewer privacy concerns. Previous works have shown that dif-
ferent emotional states can lead to variations in walking speed, ankle and knee rotation,
and ground reaction force [17]. These variations in gait are reflected in the footstep-
induced floor vibration signals, which provide insights into the pedestrian’s emotional
state. By analyzing the footstep-induced floor vibration signals, we can capture the
pedestrian’s gait patterns and thus infer their emotional states.

The main research challenge in developing our approach is that emotions have both
explicit and implicit effects on gait, making the explicit gait parameters insufficient to
describe such a complex relationship. The explicit effects of the intervention can be char-
acterized by analyzing gait parameters such as step frequency, double stance time, and
other relevant metrics. The implicit effects on the gait pattern may not be fully described
in gait parameters, requiring more implicit features. To overcome these challenges, our
approach integrates various features, including both gait parameter features (step fre-
quency, double support time, etc.) and signal-based features (Fourier transform coef-
ficients, energy contour, etc.) extracted from the footstep-induced vibration signals to
obtain better emotion recognition results. Signal-based features focus on understanding
the intrinsic properties of the signal. Gait parameter features capture information related
to the pedestrian’s walking characteristics. Our approach is evaluated in a real-world
walking experiment involving 5 participants with over 100 minutes of footstep-induced



floor vibration signals. Our results show that our approach achieves a mean absolute
error of 1.33 for valence score estimation and 1.26 for arousal score estimation out of
a score range from 1 to 9, and accuracy of 72% for High / Low valence classification
and 82% for High / Low arousal classification, which is comparable to other more intru-
sive state-of-the-art gait-based emotion recognition methods (range around 60% to 80%
[18–20]).

The main contributions of this paper are:
1. We propose a novel approach for recognizing emotions based on footstep-induced

floor vibration signals. To the best of our knowledge, this is the first emotion
recognition system based on footstep-induced vibration signals.

2. We develop and integrate both gait parameter features (step frequency, double sup-
port time, etc.) and signal-based features (Fourier transform coefficients, energy
contour, etc.) to capture both the explicit and implicit effects of emotions on gait.

3. We conduct a real-world walking experiment with 5 participants, which consists
of over 100 minutes of walking samples, and demonstrate the effectiveness of our
approach.

The rest of the paper presents the background information, our emotion recognition
system, evaluation with a real-world walking experiment, and conclusions.

BACKGROUND: EMOTION, FOOTSTEP-INDUCED FLOOR VIBRATION

The main intuition of our approach is that emotions influence physiological activi-
ties, and thus affect gait patterns, ultimately leading to footstep-induced floor vibrations
through the interaction between the foot and the floor (See Fig. 1). This section includes
an introduction to the description of emotions, then the relationship between emotions
and gait patterns, and an explanation of the influence of gait patterns on footstep-induced
floor vibrations.

Figure 1. Relationship between emotion, gait, and footstep-induced floor vibration

In this paper, we use the emotional states described by Russel’s 2D circumplex model
of emotion (See Fig. 2), which is one of the most widely utilized models for describing
emotion [21]. Russell’s model conceptualizes emotion as comprising two independent
dimensions: valence and arousal. Each quadrant of the 2D space represents a specific
type of emotion.

Emotional valence and arousal correspond to the physiological activity associated
with each emotion, thus affecting gait patterns (See Fig. 1). High arousal emotions like
anger and anxiety are associated with significant increases in physiological activity (e.g.,
heart rate) as compared to low physiological emotions like sadness and reflection [22].
Similarly, emotional valence refers to the “pleasantness” of the emotion being experi-
enced. Emotions like happiness and joy are “pleasant” emotions whereas emotions like
sadness and anger are “unpleasant emotions”. Past research suggests that both emo-
tional valence and arousal are independently associated with gait patterns. For instance,
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Figure 2. Russel’s circumplex model of emotions

some research suggests that elicitation of pleasant vs unpleasant emotions results in sys-
tematically different patterns of gait [23]. Similarly, other research suggests that the
valence component of emotions can be predicted independently using features derived
from gait [24].

Different gait patterns can result in distinct patterns of footstep-induced vibration sig-
nals due to the interaction of the forces between the foot and the structure (See Fig. 1).
Previous studies have demonstrated that footstep-induced floor vibration signals carry
valuable information about human gait patterns, which can be used for a variety of ap-
plications, such as occupant identification [25, 26], localization [27, 28], activity recog-
nition [29–32], and health status estimation [33]. The time difference between detected
footstep signals can indicate step frequency. Additionally, a higher foot lift can result
in a stronger force applied to the floor, leading to larger energy in the vibration sig-
nals. The contact type can also impact the time-frequency spectrum of the vibration
signals [33]. For example, dragging feet can cause friction with the floor, resulting in
higher frequency signals. By extracting features from the footstep-induced vibration
signals, we can gather information about their gait patterns, allowing us to infer their
emotional states.

EMOTION RECOGNITION SYSTEM USING FOOTSTEP-INDUCED FLOOR
VIBRATION

Our emotion recognition system mainly consists of three modules (See Fig. 3):
1) Footstep Detection and Data Preprocessing, 2) Emotion-Related Feature Extraction,
and 3) Emotion Recognition Based on Combined Emotion-Related Features. In the first
module, the footstep-induced floor vibration signal sequence is segmented into indi-
vidual footstep signals and pre-processed. In the second module, we extract both gait
parameters and signal-based features from the footstep-induced floor vibration signals to
capture the gait pattern. In the third module, the extracted features are embedded using
different types of layers and then fed into a multilayer perceptron model to estimate the
pedestrians’ emotional states.

Module 1: Footstep Detection and Data Preprocessing. In Module 1, the footstep-
induced floor vibration signals are captured and segmented into individual footstep sig-
nals and then pre-processed for further analysis. The footstep-induced floor vibrations
are captured and converted into electrical signals and amplified to increase the signal-to-
noise ratio. We develop an algorithm to detect footstep signals and separate them from
the whole vibration signal sequence. To achieve this, we detect the major peaks of the
absolute value of the wavelet coefficient of the vibration signals over time domain [28],



Figure 3. System Overview

which is caused by the force applied to the floor when walking. Assuming that each
footstep last around 0.35 seconds (average footstep signal duration time based on our
observation), the 0.35-second sequence window centered around the detected peak is
separated as a footstep signal sequence. Due to hardware limitations, there may be in-
stances of signal clipping, which can affect the signal shape and later feature extraction.
To address this issue, we first detect the clipped sections of the signal, where the signal
stays at the upper or lower limit range for an extended period. Then we use the sample
points around the clipping section to perform polynomial interpolation, thereby reducing
the clipping effect on the signal.

Module 2: Emotion-Related Feature Extraction. To better capture the intricate
features of gait patterns related to emotions, we extract both gait parameter features
[1, 17], as well as commonly used signal-based features [34] based on the footstep-
induced vibration signals. The gait parameter features include step frequency, double
support time, peak ratio of the heel-strike and toe-off, and footstep friction indicator.
Previous studies have shown that during high-arousal emotions, the walking speed is
faster and the joint rotation angle is larger, with larger rotation angles of knees observed
during happy emotions [1]. Hip rotation is affected by leaning backward under low
arousal emotions [1]. Step frequency can indicate the speed of walking. Double sup-
port time and peak height ratio reflect the pedestrian’s center of gravity leaning forward
or backward, which indicates the pedestrian’s relaxation level. The footstep friction is
usually caused by the low height of the foot lift during the swing phase.When the foot is
moving forward, the reduced height of the foot lift results in the foot during the swing
phase remaining partially in contact with the ground, causing friction to occur. The step
frequency is calculated based on the time difference between the current step and the
next consecutive detected footstep. The double support time is calculated as the time
difference between the heel-strike time and the toe-off time [35]. To detect heel strike



and toe-off, we apply wavelet transform to the signal and identify the peak of the higher
frequency band (>=100 Hz) and lower frequency band (<100 Hz), respectively. Fric-
tion is detected through the higher frequency bands (>=100 Hz), as it usually generates
shorter-duration signals with higher frequency components. We use an indicator variable
to represent the presence (1) or absence (0) of friction during each footstep.

The signal-based features are the smoothed signal energy contour (0.01-second win-
dow), Fourier transform spectrum, and continuous wavelet transform spectrum. Com-
pared to gait parameter features, the signal-based features with higher dimensions pro-
vide a representation of the footstep-induced vibration signals with less loss of origi-
nal information, allowing us to extract additional information related to the pedestrian’s
gait and emotional states. The energy contour of a vibration signal corresponds to the
strength applied to the floor by the feet. The Fourier transform spectrum provides fre-
quency domain information of the signal, which indicates the pedestrian’s gait pattern.
For example, when the ankle rotation is larger, the heel strike results in a sudden im-
pulse to the floor, causing higher-frequency vibrations. Additionally, 2-dimensional
time-frequency features, such as the continuous wavelet transform spectrum, can in-
dicate both temporal and spatial information, allowing for the detection of frequency
distribution changes over time.

By combining both gait parameters and signal-based features, we can better charac-
terize gait patterns in quantitative ways, which allows us to capture the complex rela-
tionship between gait patterns and emotion.

Module 3: Emotion Recognition Based on Combined Emotion-Related Fea-
tures. In Module 3, we develop various methods to extract emotional state informa-
tion from features characterized by different types of data dependencies. Subsequently,
a multilayer perceptron is utilized to estimate the valence and arousal scores of the
pedestrians. The signal-based features can be grouped into 1-dimensional sequential
features (energy contour (0.01-second window), Fourier transforms spectrum), and 2-
dimensional time-frequency features (continuous wavelet transforms spectrum) based
on the data dependency type for subsequent extraction of information with different lay-
ers. They are later processed with different layers to capture different types of data
dependencies. We select long-short-term-memory (LSTM) layers to process the tem-
poral sequential features, as LSTM is a type of recurrent neural network (RNN) that
uses gate functions to track long-term dependencies in the sequences, making it well-
suited for sequential data. In contrast, gait parameter features do not have long-term or
short-term dependencies like sequence data, so we select fully connected layers. The
time-frequency spectrum is a 2-dimensional feature that requires capturing both the time
and frequency dependencies. Hence, we select a convolutional layer, which is proficient
at extracting information from 2-dimensional data and thus capturing the time-frequency
dependencies in the vibration signals. We concatenate the embedded features and feed
them into a multilayer perceptron, which consists of two fully connected layers. The
outputs of the model are the valence score and arousal score.

EVALUATION WITH REAL-WORLD WALKING EXPERIMENT

To evaluate our system, we conduct an experiment with five participants, with each



TABLE I. THE VALENCE AND AROUSAL SCORE VARIATIONS BETWEEN INDIVIDUALS
AND WITHIN INDIVIDUALS AND THE AVERAGE PRE-POST DIFFERENCES IN VALENCE
AND AROUSAL SCORES.

Range of
Valence

Range of
Arousal

Average Pre-post
Difference of Valence

Average Pre-post
Difference of Arousal

Person 1 7 8 3.125 4.5
Person 2 1 4 0.625 1.875
Person 3 2 4 1 1.5
Person 4 5 4 2.25 1.875
Person 5 6 6 1.75 2.375

participant walking back and forth for nine trials of 2-3 minutes each on a wooden floor.
As illustrated in Fig. 4, four geophone sensors (SM-24) are attached to the floor to cap-
ture the footstep-induced floor vibration signals, with a sampling rate of 500 Hz. The
signal from the sensor is then amplified by a hardware amplifier to increase the signal-to-
noise ratio. Prior to walking, participants are provided with specific music and lighting
to elicit particular emotions. The music clips used are selected from the Previously-
Used Musical Stimuli (PUMS) database [36], while the light strip’s (Govee RGBIC
LED Strip Lights) color is chosen as warm and bright for positive emotional stimuli and
shine brightly with high arousal emotional stimuli. In contrast, a cold color is used for
negative emotional stimuli and remains still for low arousal emotional stimuli [37]. In
total, eight sets of emotional stimuli were administered, with two each for high valence
high arousal, high valence low arousal, low valence high arousal, and low valence low
arousal. The order of the stimulus sets is randomized for each participant. For each trial,
participants are asked to walk on the platform back and forth for about 2-3 minutes. All
experiments are conducted in accordance with the approved IRBs.

Figure 4. Experiment Setup

The ground truth labels in our evaluation are the self-reported valence and arousal
scores. After each 2-3 minute walking trial, participants are asked to complete the Self-
Assessment Manikin (SAM) survey scale [38], which involves rating their subjective
valence and arousal levels on a scale of 1 to 9.

The effectiveness of the emotional stimulus in the experiment is validated through the
variation in valence and arousal scores, both between individuals and within individuals,
as well as the average pre-post differences in these scores (See Table. I). Greater average
pre-post differences in valence and arousal scores indicate a stronger impact of emotion
stimuli on participants. It is observed that the emotional stimuli have a notably strong
impact on Person 1, a moderately strong effect on Persons 4 and 5, and a minor effect
on Persons 2 and 3.

Our method achieves promising results on the dataset of five participants, comprising
12918 footstep signal samples. Specifically, the mean absolute errors of the valence and



arousal scores are 1.33 and 1.26, respectively, with a score range of 1 to 9. Figs. 5a and
5b present the estimation results for the five participants, highlighting the error of our
model in estimating the emotional states of pedestrians.

Figure 5. Evaluation Result showing the mean absolute error (MAE) of (a) valence score
for 5 participants (Average MAE value: 1.33) (b) arousal score for 5 participants (Av-
erage MAE: 1.26) (c) valence score comparison: Combining Features vs. Single Type
Feature (d) arousal score comparison: Combining Features vs. Single Type Feature

For the emotion classification task, emotions are classified as high or low valence
(arousal) with the threshold set as the average valence (arousal) score for each pedestrian.
We achieve a classification accuracy of 72% for high/low valence classification and 82%
for high/low arousal classification, which is comparable to other more intrusive state-of-
the-art gait-based emotion recognition methods (range around 60% to 80% [18–20]).

Moreover, we compare the performance of our model when using a combination of
features and when using only one type of feature, using the data from person 1. As shown
in Fig. 5c and Fig. 5d, the results indicate that our proposed method outperforms the
use of a single feature type in terms of estimation error, demonstrating its effectiveness.

CONCLUSION

In this paper, we introduce a novel approach for emotion recognition using footstep-
induced floor vibration signals. The main challenge in developing our approach is that
emotions have both explicit and implicit effects on gait, making the explicit gait param-
eters insufficient to describe such a complex relationship. To this end, we develop a set
of emotion-sensitive features from the vibration signals, including gait parameters, se-
quential features, and time-frequency spectrum features to capture both the explicit and
implicit effects of emotion on gait. These features are then combined and fed into a mul-
tilayer perceptron for emotion estimation. Our approach achieves promising results on a
dataset of 5 participants, with a mean absolute error of 1.33 for valence score estimation
and 1.26 for arousal score estimation over 100 minutes of walking out of an overall score
range of 1 to 9. For the emotion classification task, emotions are classified as high or
low valence (arousal) with the threshold set as the average valence (arousal) score of the
pedestrian. We are able to achieve an accuracy of 72% for the High / Low valence clas-
sification and 82% for the High / Low arousal classification in the emotion classification
task, which is comparable to other more intrusive state-of-the-art gait-based emotion
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