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Abstract: Different from traditional fastener systems, embedded track is a rail placed in the groove 
and wrapped by a variety of polymer materials, thus realizing the longitudinal continuous support and 
vibration noise reduction. Due to its superior dynamic characteristics, it has been initially used in trams, 
subways and high-speed railways. With the promulgation of the Noise Law, its demand is also 
increasing. However, its structure and mechanism are relatively complex, and its dynamic 
characteristics changes with the service life. In addition, its performance is difficult to measure directly 
and service life is as long as 30 years or more. In order to analyze the dynamic characteristic changes 
of the embedded track throughout its life cycle, fatigue tests are performed by subjecting the embedded 
track to sinusoidal excitation of different amplitudes and periods. This allows to simulate its service 
process during the whole life cycle. Meanwhile, the vibration response of embedded track at different 
stages is collected. Unfortunately, it is difficult to judge the performance and state of embedded track 
according to the vibration response directly. In order to solve this problem, this paper proposes an 
embedded track long-period dynamic response analysis method based on machine learning. This 
method can evaluate the performance change of the embedded track without any label only based on 
the dynamic response. Among them, self-supervised deep learning networks are used to autonomously 
extract deep features of the vibration response. These features are then classified by clustering 
algorithms into different phases of the service life. Finally, the change law of vibration and noise 
performance of embedded track in different stages is explored. The proposed method can determine the 
performance status of the pre-embedded track based on the field vibration response test results. It also 
estimates the decay process of track performance with service life and determines the maintenance cycle 
according to the performance requirements. 
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1. Introduction 

Different from traditional fastener systems, embedded track is a rail placed in the groove and 
wrapped by a variety of polymer materials, thus realizing the longitudinal continuous support and 
vibration noise reduction. As shown in Fig. 1, this type of track structure is primarily composed of 
multiple high-polymer materials that provide continuous longitudinal support. This design 
significantly reduces the vibration of the track structure caused by the unevenness associated with 
traditional discrete supports. Furthermore, the deformation of the elastic materials surrounding the 
trough-shaped rail contributes to energy dissipation, resulting in excellent vibration attenuation and 
noise reduction properties[1][2][3]. Additionally, this track structure offers enhanced stability [4] and 
safety [5]. 
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Fig. 1  Schematic diagram of the embedded track 

Since the occurence of first continuous supported embedded track in Deurne of Netherlands in 

1976[1], vast number of scholars have carried out their studies on its vibration and noise reduction 

performance. The advantage in vibration and noise reduction has caught wide attention[2][3], at the 

same time, many scholars start to conduct a lot of studies on the interaction between wheel-rail and 

vibration noise properties of embedded track.  

Shamalta et al[6] have built up 1D and 2D kinetic models of embedded track under the excitation 

of mobile loading. On this basis, Ling L, Han J et al [4] took advantage of  multi-rigid body dynamics 

and chose springs and dampers as filling materials to do approximate simulation. They compared and 

analyzed the difference between embedded track and fastener track in terms of wheel-rail interaction 

and pointed out the advantages of embedded track from the perspectives of dynamic stability, 

smoothness, comfort, etc through a coded fastener. However, the method has to intercept the rail, 

which is not conducive to the high frequency research on embedded track[7][8]. In the literature 

article [9], X.Sheng has inferred the dynamic properties of periodically supported and continuously 

supported tracks from the theory of infinitely long periodic structures, pointing out that the dynamic 

properties of a continuously supported track and a discrete supported track are the same at the 

frequency of 200Hz(200Hz is related with track structure parameter, the literature employs the track 

from Europe, whose fastener’s stiffness is considerably higer). The conclusion drawn is the same as 

the literature articles[10][11], but the difference increases in case of frequency above 200Hz. He 

pointed out in his further research that periodic discrete support would lead to parameter 

excitation[12]. However, what’s regretful is it still employs stiffness damping to simulate the dynamic 

flexibility of a new system of a continuously supported track, not reflecting the dynamic property of 

polymer materials of embedded track in the model.  

In order to consider the inception form of embedded track and frequency response property of 

polymer material in details, Van Lier[13] utilized TWINS model combined with the finite element 

method to study the ascoutic radiation properties of an existing embedded track and optimize it to 

some extent. The optimized steel rail turned out to be a shorter steel rail and increased the stiffness of 

rail pad and surrounding elastic body. He then compared the traditional embedded track and the 

optimized embedded track with the ballasted track. The result showed that the corresponding vehicle 

wheel-track system’s noise is 46~dB(A) less than the ballasted track for the optimized embedded 

track. Zhao et al[8] used site testing, 3D finite element and boundary element methods to predict the 

vibration ascoutic radiation of the embedded track employed by a railed tram and perform relevant 

testing, verifying the model effectiveness through the comparison of simulation and test results. He 

carried out the vibration noise property analysis on the embedded track for a railed tram, and further 

optimized the structure within the slot of the embedded track. However the excitation condition 

employed for simulation is the actually measured steel rail roughness spectra of the route, the relevant 
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optimizing result and rules showed a certain level of reliance on the steel rail roughness. What’s more, 

the finite element and boundary element in the model require inception handling. Although the article 

has verified the effectiveness of finite element inception, it yet verifies the effectiveness of boundary 

element inception. On top of this, Nilsson[14] calculated the ascoutic radiation of embedded track and 

traditional steel rail by using the wavenumber finite element and boundtry element methods. The 

result showed that at some frequencies, due to the existence of free surface of elastic body of the 

embedded track, it made the ascoutic radiation efficiencies of steel rail and elastic body surface higher 

than that of traditional steel rail. However, due to a good attenuation effect on vibration by the 

embedded track, it counteracted the effect of the increased ascoutic radiation efficiency of the 

embedded track.  But, at the low frequencies, the embedded track may radiate more noise than a 

common steel rail, which is mainly due to that a common steel rail is a linear monopole sound source 

while an embedded track presents as a linear dipole sound source. 

Embedded tracks, known for their excellent vibration and noise reduction performance, are 

currently being widely used in tramways, subways, and high-speed railways. The demand for 

embedded tracks is further increasing with the implementation of noise regulations. Unfortunately, 

over time, the characteristics of the polymer materials used in embedded tracks gradually change 

[15][16]. According to relevant studies, the vibration and noise reduction performance of embedded 

tracks are closely related to the properties of the polymer materials. Consequently, it becomes 

challenging for embedded tracks to maintain consistently high performance throughout their service 

life. In order to analyze the dynamic characteristic changes of the embedded track throughout its life 

cycle, fatigue tests are performed by subjecting the embedded track to sinusoidal excitation of 

different amplitudes and periods. This allows to simulate its service process during the whole life 

cycle. Meanwhile, the vibration response of embedded track at different stages is collected. 

Unfortunately, it is difficult to judge the performance and state of embedded track according to the 

vibration response directly. In order to solve this problem, this paper proposes an embedded track 

long-period dynamic response analysis method based on machine learning. This method can evaluate 

the performance change of the embedded track without any label only based on the dynamic response. 

Among them, self-supervised deep learning networks are used to autonomously extract deep features 

of the vibration response. These features are then classified by clustering algorithms into different 

phases of the service life. Finally, the change law of vibration and noise performance of embedded 

track in different stages is explored. The proposed method can determine the performance status of 

the pre-embedded track based on the field vibration response test results. It also estimates the decay 

process of track performance with service life and determines the maintenance cycle according to the 

performance requirements. 

2. Fatigue experiment description 

The mostly used equipment and accessories in the experiment in the paper include stiffness 

experimental system, embedded track short trial piece, data collection system etc. Fig. 2 gives out the 

installation and the loading means of MTS and the trial pieces of the embedded track. The trial pieces 

for the embedded track mainly contain 60kg/m short rail, polymer material, pad underneath the rail, 

wrapping body steel plate etc.  



 
(a) The trial piece for the embedded track 

 
(b) the experiment photo of the embedded track 

Fig. 2  The installation and loading means of the stiffness experiment for the embedded track 

3. Model establishment 

The modeling process is depicted in the following flowchart, as shown in Fig. 3. It can be divided 

into the following steps: 

Step 1: The dynamic response variations of embedded track during its service life cycle were 

investigated through fatigue experiments. As it is difficult to monitor the dynamic properties of the 

track structure in real time during the experiment, instead Dynamic response tests of the track 

structure were conducted at fatigue cycles of 0, 1 million, 2 million, and 3 million cycles. The 

structural dynamic stiffness and damping ratio were obtained from these tests. 

Step 2: The finite element model is compared with experimental test results for verification and 

the numerical model is used to complement the complete experimental working conditions. 

Step 3: Classification of embedded track noise reduction effects using long-period machine 

learning models. 

Fig. 4 presents the on-site test photographs of the dynamic response of the embedded track in its 

initial state, along with a comparison of the test results with the predicted values. From the figure, it 

can be observed that the numerical prediction results are consistent with the experimental results. The 

numerical model demonstrates good agreement with the experiments, indicating its capability to 

replace experimental testing and provide data inputs for long-term machine learning models. 



 

Fig. 3 A flowchart of prediction model.  
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Fig. 4 Comparison of tested results with predicted results  

4. Predicted results 

Fig. 5 presents the contour maps of noise distribution in the embedded track structure at different 

frequencies. From the figure, it can be observed that the embedded track structure exhibits non-

directional noise below 100 Hz, and as the frequency increases, the directional characteristics become 

more prominent with increasing sound pressure. Furthermore, the overall sound pressure is mainly 

concentrated within the track area, specifically between the two side rails, while the external field 

noise exhibits stronger directional characteristics. 
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(a) 100Hz 

 
（b）200Hz 

 
(c) 300Hz 

 
（d）400Hz 

 
(e) 800Hz 

 
（f）Total A-weighted sound pressure level 

Fig. 5 Field point sound pressure 

Fig. 6 illustrates the total wheel-rail noise levels of the embedded track at different stages, as 

classified by the long-term machine learning model, along with the corresponding noise reduction 

amounts. From the figure, it is evident that as the service life increases, the noise reduction 

effectiveness of the embedded track gradually diminishes and can be roughly divided into six stages. 

After the embedded track has undergone 3 million fatigue cycles, the noise reduction effectiveness 

decreases from an initial 8.1 dBA to 3.5 dBA. 
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Fig. 6 Noise levels of the embedded track at different stages  

5. Conclusion 

this paper proposes an embedded track long-period dynamic response analysis method based on 

machine learning. This method can evaluate the performance change of the embedded track without 

any label only based on the dynamic response. Among them, self-supervised deep learning networks 

are used to autonomously extract deep features of the vibration response. These features are then 

classified by clustering algorithms into different phases of the service life. Finally, the change law of 

vibration and noise performance of embedded track in different stages is explored. The following 

conclusions were reached： 

1、the embedded track structure exhibits non-directional noise below 100 Hz, and as the 

frequency increases, the directional characteristics become more prominent with increasing sound 

pressure. Furthermore, the overall sound pressure is mainly concentrated within the track area, 

specifically between the two side rails, while the external field noise exhibits stronger directional 

characteristics. 

2、as the service life increases, the noise reduction effectiveness of the embedded track 

gradually diminishes and can be roughly divided into six stages. After the embedded track has 

undergone 3 million fatigue cycles, the noise reduction effectiveness decreases from an initial 8.1 

dBA to 3.5 dBA. 
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