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ABSTRACT

Recent studies have suggested that the fusion of cross-modal information can en-
hance the performance of deep learning-based segmentation algorithms. In this context,
this study evaluates the benefits of RGB-D fusion with regard to damage segmentation
in reinforced concrete buildings. The fusion of depth data was observed to enhance
the segmentation performance significantly. Additionally, a number of surrogate tech-
niques based on modality hallucination and monocular depth estimation are exploited to
eliminate the need for depth sensing at test time without foregoing the benefits of depth
fusion. The proposed techniques require depth data only for network training, and at test
time, depth features are simulated from the corresponding RGB frames, obliterating the
neellIfor real depth perception. The proposed methods are evaluated and are shown to
increase the damage segmentation accuracy.

INTRODUCTION

Aging civil infrastructures require periodic inspection in order to prevent sudden
failure, which causes loss of lives and economic setbacks. The existing inspection tech-
niques are, by and large, manual and, therefore, time-consuming, subjective, expen-
sive, and risky. Computer vision-based algorithms have been explored in recent times
to investigate the prospect of robotic inspection as a viable alternative to such manual
techniques. A number of studies exploited deep learning-based methods to this end for
autonomous defect detection in civil infrastructures [|1}2]. However, the previous stud-
ies relied solely on the photometric (RGB) data for identifying damages in videos and
images. There is no study to date that leveraged depth perception for semantic labeling
of various damages that commonly occur in reinforced concrete structures subjected to
extreme loading. The present study addresses this research gap by incorporating depth
fusion into an encoder-decoder-based fully convolutional network for semantic damage
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segmentation. This study uses absolute depth and surface normal maps to represent
depth data. The fusion of depth data was observed to enhance the segmentation per-
formance significantly. Additionally, two surrogate techniques are proposed to avoid
depth sensing at test time and yet retain the benefits of depth fusion, as shown in Fig-
ure [ A pure RGB-based model is used as a reference for traditional convolutional
neural network approaches (Figure [I(a)). This study also explores a fusion-based archi-
tecture (RGB-D) where a pair of encoders take RGB and encoded depth (D) as input
(Figure [I(b)). The last decoder layers’ feature maps are fused and sent to a shared de-
coder to obtain predicted damage labels. This fusion approach can be leveraged when
depth sensing is enabled during testing. Additionally, a modality hallucination-based
fusion scheme (RGB-Dyy) is explored (Figure [I(c)), which enables the simulation of
mid-level convolutional D features from a single-frame RGB image. These halluci-
nated D features are fused with RGB features before being sent to a common decoder.
Furthermore, the study examines a fusion strategy (RGB-Dypg) where deep learning
techniques simulate the encoded depth (Dypg) data from corresponding RGB frames.
Dwmpk is then fused with RGB data in the same way as in the case of RGB-D. Alto-
gether, the surrogate strategies (RGB-Dyy and RGB-Dypg) require depth data only for
model training. The need for depth sensing during testing is eliminated without signif-
icantly reducing segmentation performance. The proposed depth fusion framework is
validated on a computer-generated synthetic dataset containing three damage categories
commonly observed in reinforced concrete buildings subjected to seismic excitations:
spalling, exposed rebars, and severely buckled rebars. Overall, this study makes several
key contributions, including demonstrating that deep learning-based damage segmenta-
tion algorithms can significantly improve accuracy through the fusion of RGB and depth
information. The study explores two different strategies for encoding depth data and
proposes surrogate techniques that provide the benefits of depth fusion without requir-
ing depth sensing at test time.

SYNTHETIC DATA GENERATION

The single biggest factor that deterred the scientific community from exploring the
utility of depth data with regard to vision-based autonomous condition assessment of
civil infrastructure is the scarcity of a publicly available damage dataset that contains
depth information. This shortcoming is overcome in this study by using a rasterization-
based game engine called Houdini to generate a database of synthetic damage data con-
taining color and depth information. The database contained a total of 1792 scenes
belonging to three different damage categories, namely, spalling, spalling with exposed
rebars, and severely buckled rebars (Figure2)). The generated data was labeled automat-
ically using a special feature inbuilt into Houdini.

DEPTH ENCODING TECHNIQUES

Representing the depth information in a proper way is paramount for getting the
most out of depth fusion. The quest for a suitable strategy for representing depth data
has led to the emergence of various encoding techniques such as absolute depth-based
encoding (ADE) and surface normal-based encoding (SNE), which are considered in
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Figure 1. Various depth fusion strategies are explored in this study. The trapezoids
tapered on the right and left represent encoders and decoders, respectively. The ‘+’ sign
symbolizes a fusion of convolutional features.

this study. In the ADE, the value stored at each pixel of the depth map (Figure 3(b))
represents the absolute distance between the camera and a physical point in the 3D. On
the other hand, in the SNE (Figure , the depth data is represented in terms of X,
Y, and Z components of the surface normal vector computed at each point in the scene.
The resulting surface normal map looks like a texture and provides valuable information
about the presence of damage in the scene.

METHODOLOGY

This study utilized a baseline model involving a fully-convolutional encoder-decoder
network (Figure E[) The encoder is based on the VGG-16 architecture [3]] and extracts
important features from the input image. On the other hand, the decoder upsamples those
features to match the original input resolution, ensuring that the output segmentation
mask corresponds pixel-to-pixel with the input image. The effectiveness of the proposed
surrogate techniques is compared against a pure RGB-based model (Figure (a)) and an
RGB-D fusion network (Figure (b)) that can be used when depth data are available.
The fusion network has two encoders dedicated to the RGB and D modalities (Figure
M (D). The feature maps from the last layers of the two encoders are merged before being
passed to the shared decoder layers.

The modality hallucination technique improves the accuracy of a test-time RGB-only
network by using absolute depth or surface normal data, denoted as D in this study, as
side information during training. This technique requires paired RGB and D images
during training and introduces a third encoder called the hallucination branch that takes
RGB images as input (Figure 5(a)). A regression-based hallucination loss allows for
efficient information sharing between the D and hallucination branches, as shown in Eq.
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Figure 2. Damage categories considered in this study - (a) spalling, (b) spalling with
exposed rebars, (c) spalling with buckled rebars.
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Figure 3. Various depth encoding techniques - (a) RGB image of the scene, (b) absolute
depth-based encoding (ADE), (c) surface normal-based encoding (SNE).

where ¢ and { are mid-level features from the D and hallucination branches, respec-
tively. This loss is minimized alongside a standard supervised loss over the class labels
to ensure that the mid-level convolutional features learned by the hallucination and D
branches are similar. At the end of the training process, the D branch becomes redun-
dant because the mid-level features generated by the D branch can now be generated
by the hallucination branch using RGB data. During test time, the D branch can be
discarded, and the mid-level activations from the hallucination branch can be fused to
the RGB branch to create a more informed test-time RGB-based network (Figure [5(b)).
This technique significantly outperforms a standard benchmark model trained solely on
RGB data and eliminates the need for depth sensing without any loss of segmentation
accuracy.

On the other hand, the main objective of monocular depth estimation is to predict
depth values for each pixel of an RGB image. Recent advancements in deep learn-
ing techniques have shown encouraging results in predicting a dense depth map from
a single RGB image. This study examined a convolutional neural network-based ap-
proach in this regard. The reconstructed depth maps are paired with the corresponding
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Figure 4. Network architectures that are used as benchmarks to evaluate the efficacy of

the proposed surrogate techniques. D indicates absolute depth and surface normal maps
for ADE and SNE, respectively.

Segmentation loss

Wi o.co®  Mow . oW
-
(LRl T L Stk

Hallucination branch Hallucination branch

Dropout [l Unpooling [l Score

(a) At training time (b) At testtime

Figure 5. The schema of modality hallucination. D indicates the absolute depth and
surface normal maps for ADE and SNE, respectively.

RGB frames to be used as inputs for the fusion-based segmentation models in the case
of ADE, whereas the SNE requires the depth images to be converted to surface normal
maps before being fed to the fusion network. This study uses a standard encoder-decoder
network with skip connections (Figure [6)) to generate high-resolution depth maps from
single frame RGB images. The encoder is taken from a DenseNet-169 architecture [4],
which was pretrained on the ImageNet dataset [5]. The decoder consists of a series of
up-sampling layers. The predicted depth values are compared to ground truth depths
using a composite loss function that includes an L1 loss on the depth values, an L1 loss
on the gradients of the depth image, and a structural similarity loss [6]].
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Figure 6. Deep learning-based monocular depth estimation.



RESULTS AND DISCUSSIONS

This study leveraged modality hallucination and monocular depth estimation tech-
niques to create substitutes for actual depth sensing during testing. To evaluate their
effectiveness, the intersection over union (IoU) between the predicted and target damage
regions was computed. A five-fold cross-validation was conducted, and the mean class-
specific IoUs were combined to create an overall IoU, as shown in TABLEE[). The results
showed that RGB-Dyjy and RGB-Dypg were comparable to RGB-D in terms of accu-
racy for ADE. However, for SNE, RGB-Dyy had a 4% lower IoU compared to RGB-D.
Nevertheless, RGB-Dyy was still much better than a single-modality RGB-based model.
Additionally, RGB-Dyy had higher segmentation accuracy than RGB-Dypg, in case of
SNE.

TABLE I. IoU mean values for different fusion architectures. D indicates absolute depth
and surface normal maps for ADE and SNE, respectively.

RGB ADE SNE
- RGB-D | RGB-Dyy | RGB-Dype | RGB-D | RGB-Dyy | RGB-Dyvipg
IoU Mean | 0.690 | 0.880 0.874 0.873 0.932 0.891 0.876

On the other hand, the processing speed of RGB-Dyy was found to be faster than
RGB-D and at par with pure RGB-based model (TABLE [[I). This is especially advan-
tageous for SNE, where a lot of time is usually spent on surface normal estimation. On
the other hand, the RGB-Dypg technique takes a considerably longer time, particularly
for SNE, due to its multi-stage processes. Overall, RGB-Dyy stands out as the best
surrogate strategy in terms of accuracy and processing speed.

TABLE II. Processing time (seconds/image) for various fusion strategies. D indicates the
absolute depth and surface normal maps for ADE and SNE, respectively.

RGB ADE SNE
- | RGB-D | RGB-Dyy | RGB-Dypg | RGB-D | RGB-Dyy | RGB-Dypg
0.075 | 0.092 0.076 0.167 0.362 0.076 0.705
CONCLUDING REMARKS

This study shows that depth fusion can enhance the performance of a deep learning-
based multi-class damage segmentation framework. A synthetic database is generated
using computer graphics software containing three different damage categories that are
commonly observed in reinforced concrete structures subject to extreme loading. Var-
ious encoding techniques are considered to represent depth data. Several experiments
are conducted which suggest that the proposed fusion-based framework outperforms the
traditional RGB-based approaches. The study also demonstrated that depth fusion can
be achieved without requiring any physical depth-sensing at test time. To this end, two
surrogate techniques based on modality hallucination and monocular depth estimation
are explored to simulate depth information from the corresponding RGB frames. Re-
sults showed that modality hallucination is more accurate and considerably faster than



the monocular depth estimation-based approach. Not just that, its computational cost
is comparable to a single modality RGB-based network and lower than a fusion model
leveraging real depth measurements. Overall, this research paves the way for more re-
silient civil infrastructure systems through multimodal inspection. The scope for future
work includes validating the proposed approach with real RGB-D data from various
structural systems.
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