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ABSTRACT

This paper presents a point-wise damage mapping algorithm for composite aerospace
structures wherein we classify each location of interest on a structure as belonging to a
damaged part of the structure or otherwise. The system employs an array of transducers
attached to the structure for inducing guided waves in the structure and recording resul-
tant waveforms arriving at the sensors. We present a baseline signal-based supervised
learning algorithm in which baseline measurements on the structure are made prior to
deploying it in the field and signals recorded during inspection are compared with their
baseline counterparts. For each location of interest on the structure, difference metrics
and other characteristics for M closest actuator-sensor paths to the location (M is typi-
cally much smaller than the total number of actuator-sensor paths on the structure.) are
used as input features to a machine learning classifier. The classifier outputs for all loca-
tions of interest are further processed through a series of morphological filters to produce
the damage map for the structure. The algorithm was experimentally validated on data
recorded from a unidirectional composite panel impacted at five locations. Experimental
results show that, for sufficiently high sensor densities, the algorithm presented in this
paper is capable of detecting and characterizing multiple damages accurately and with
high resolution and Serensen-Dice index greater than 0.9 for all test cases, and is com-
parable to results obtained from traditional C-scan ultrasound non-destructive inspection
sysfgms. The point-wise damage mapping algorithm offers an attractive high-resolution
alternative to traditional grid-based tomographic reconstruction approaches.

*

INTRODUCTION

Guided Wave-based Structural Health Monitofing (GW-SHM) has been widely uti-
lized to inspect and monitor the integrity of structures. A good review of GW-SHM
techniques and their applications can be found in [1]. In a standard GW-SHM setup, the
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structure of interest is excited using a pre-defined wave using actuators located on the
structure, and the resultant guided waves are recorded at different locations on the struc-
ture. The acquired signals are then analyzed to extract damage-related signatures, which
are then used to develop algorithms to detect, characterize and localize damage, predict
the remaining useful life of the structure, and recommend maintenance strategies. The
aerospace industry has evolved significantly in recent years to include different types
of fiber-reinforced composite materials. Composites have high stiffness-to-weight prop-
erties which are exploited to fabricate large aircraft parts [2]. Inspection of large and
complex structures in-situ using traditional non-destructive inspection (NDI) systems is
time-consuming and difficult. We consider a Lamb wave-based SHM system, in which
an array of transducers mounted on a structure is used to induce vibrations in the struc-
ture and record the resulting waveforms arriving at different locations on the structure.
The signals arriving at the sensors are further processed to reconstruct a map of the struc-
ture, which provides information about the location as well as the extent of anomalies
on it.

Several researchers have reported on algorithms for reconstructing damage maps to
locate damage in structures [3]] [4] [5]. Since image reconstruction is typically a sparse
problem (as damaged area < area of the structure), iterative Algebraic Reconstruction
Techniques (ART) based on the Kaczmarcz algorithm have been used for reconstructing
damage maps [|6] [[7]. Though there have been different implementations of the ART
algorithm, they are all grid-based algorithms where the inspected structure is divided
into pixels or voxels such that the impact of damage on the data recorded at a sensor is
modeled as a function of the damage in the voxels that lie on the path between the actu-
ator and the sensor. More details about the ART can be found in [8]]. Although ART is
a powerful technique for image reconstruction, it suffers from several drawbacks. Since
ART is typically implemented in an iterative fashion, the convergence rate can be slow if
we want to achieve high-resolution damage maps. Reconstructing high-resolution dam-
age maps requires the image to be divided into a large grid structure, which increases the
memory and computational requirements. Moreover, as we increase the number of pix-
els in the formulation, the optimization problem becomes ill-posed and performs poorly.
In this paper, we present a point-wise damage mapping algorithm that offers a high-
resolution alternative to traditional grid-based tomographic reconstruction approaches,
wherein we classify each sampled location on a structure as belonging to a damaged part
of the structure or otherwise. Since the algorithm presented does not depend directly
upon the number of points we sample, it is possible to achieve high-resolution damage
maps. To the best of the author’s knowledge, our approach is novel. Further, experi-
mental results presented in this paper demonstrate the ability of the method to accurately
detect and characterize impact damage in carbon fiber-reinforced composite structures.

The remainder of this paper is organized as follows. In the subsequent section, we
present the point-wise damage mapping algorithm along with its individual components.
This is followed by a section that describes the experimental setup for this work. The
section after summarizes the performance of the point-wise damage mapping algorithm.
Finally, the paper is concluded in the last section.
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Figure 1. Overall framework of the point-wise damage mapping algorithm

THE POINT-WISE DAMAGE MAPPING ALGORITHM

Figure [I] displays the overall framework of the point-wise damage mapping algo-
rithm. The algorithm is designed to locate damage and to estimate the boundaries of
damage present in the structure using a set of transducers that act both as actuators and
sensors as needed. The algorithm assumes that the anomaly does not create a through-
thickness hole. Lamb waves traveling from an actuator to a sensor may propagate
through damaged areas of the structure, resulting in changes in the characteristics of the
recorded sensor signal. Characterizing the differences between the baseline and test sig-
nals will allow us to interpret the state of the structure. In point-wise damage mapping,
for each location of interest, we use damage indices associated with the actuator-sensor
paths and the shortest distance of the location to the actuator-sensor paths. For each
location, we use only the M closest paths to it, where M is much smaller than the to-
tal number of actuator-sensor pairs on the structure. The classifier uses these M sets of
features to determine whether the location of interest belongs to a damaged part of the
structure or otherwise. By doing this for a large number of points on the structure, a high-
resolution map can be obtained. To mitigate the effects of isolated errors in the classifier
outputs, we use a post-processing framework inspired by morphological processing. The
morphological processing assumes that the damage profile is sparse and clustered, and
removes isolated damage locations identified in areas otherwise estimated as damage
free as well as isolated healthy locations identified in areas otherwise determined to be
damaged.

Our strategy for locating damage, and constructing a representative high-resolution
damage map consists of four main steps as presented in Figure [I} The first step is to
pre-process the acquired raw signals and prepare them for further analysis. More de-
tails about the pre-processing steps are given in the section on “Experimental Setup”.
The next step involves estimating one or more difference metrics between each test sig-
nal and the corresponding baseline signal. The difference metric may be computed in



a number of different ways. For example, we could estimate the mean-square value
of the difference between the two signals involved. Another option is to compute the
correlation coefficient py, between the test and baseline signals.

A feature set that includes the difference metric and other parameters of the structure
is established for each location inspected on the structure. The additional parameters are
described later in this paper. The third step is to use a machine learning system to predict
the probability that each location of interest on the structure belongs to a damaged part
of the structure. In the final step, the predicted probabilities are fed to a post-processing
framework to mitigate problems due to isolated classification errors. The rest of this
section will provide more fundamental insights into the algorithmic components of the
system.

Feature Selection

In any damage detection/characterization problem, it is important to extract features
from the sensor signals that are sensitive to damage on the structure. Feature extraction
also reduces the dimensionality of the data and therefore reduces the computational cost
of the SHM algorithm. In this work, for each actuator-sensor pair we used the time
average of the squared difference of the baseline and test signals as one of the features.
This is computed as

N
Dy = 5 S lfnig(6) — s (R m
k=1

where 7, ; ;(k) is the preprocessed test signal and ;; ;(k) is the preprocessed baseline
signal for the (7,7)" actuator-sensor pair and N is the total number of samples in the
signals. An advantage of the squared distance metric is that we can expect this metric to
be large when the actuator-sensor pair passes through a damaged area, and small when
it does not. Other difference metrics may also be used as discussed previously. An
example is the correlation coefficient-based metric given by D; ; = 1 — p; ; , where p; ;

is the correlation coefficient estimated as

2 @iy (R) = @1 (B) (T3 (k) — T5(F))

V2 (T (k) = Toij (K))2 32 (To,0,5 (k) — Tui5(k))?
where 7, ; j(k) is the mean of the preprocessed test signal, and 7, ; ;(k) is mean of the
preprocessed baseline signal for the (i,7)" actuator-sensor pair. This difference metric
has the additional advantage that it is bounded above and below since 0 < D;; < 1.
The feature set also includes the distance of each location of interest to its M nearest
actuator-sensor paths. Let (x;, y;) be the location of the 1'* actuator, and let (x;, y;) the
location to the j** sensor. The distance [,(i, j) for any location given by (xo, yo) to the
direct path connecting the actuator and sensor is given by

Pij (2)
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Classification Algorithm

A large number of classifier algorithms exist in the literature [9]. For the analy-
sis in this paper, we use the k-Nearest Neighbor (k-NN) algorithm. k-NN is a simple,
non-parametric algorithm that does not make any assumptions about the underlying dis-
tributions of the data, and is popular in many classification and regression tasks [10].
The four main features of a k-NN algorithm are a) it is a supervised learning algorithm;
b) it is a lazy learner (i.e. there is no “learning” during training. The system memorizes
the training dataset for improved computational efficiency); c) It is non-parametric; and
d) it is based on feature similarity. Since the algorithm is heavily based upon similarity
in the feature space, it is important to normalize the features before training and testing
to achieve good results. Let D be a training set {(vy, ¢1), (22, ¢2), ...(¢n, ¢n) }, Where v;
represents the i*" input feature, and ¢; its respective class. Let v be the test instance
whose class is given by c. The first step is to normalize the features in D and v. In the
analysis of this paper, we used the Min-Max normalization to normalize features, and is
given by
norm Ui — Umin

porm Ui~ Tnin_ )

Umax — Umin

v

where vy, = min(v;;i € D) and vy,,, = max(v;;¢ € D) and the min and max
operations are performed elementwise. Similarly the division in (@) is also performed
elementwise. Next, the distance between the test instance v and each instance in D is
computed. The most common choice for this is the Minkowski distance, which is given
as

n v
dy(v,z) = Z lv; — 2P 5)
i=1

where parameter p denotes the order of the Minkowski distance. p = 1 gives the Man-
hattan distance (/;-norm) and p = 2 gives the Euclidean distance (/5-norm). n represents
the total number of input samples. Next, £ closest instances to v in D are selected,
and their respective class labels are determined. The final step involves computing the
probability that the test instance x belongs to class 1, and is computed as

Ple=1|X =v) = %Z I(c;=1) (6)

where [ is the indicator function that represents the count or occurrence of an event.
The final predicted class c is determined with the help of a user-defined classification
threshold ?x,,,, and is given as

&
c=Pc=1X =) Ztimn- (7)
Co

where ¢y and ¢, represent class 0 and class 1 respectively.
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Figure 2. Overview of the post-processing algorithm presented in this paper

Post-Processing

The final part of our framework involves post-processing the output probabilities
obtained from the classifier to mitigate problems due to isolated errors at the classifier
output. Ideally, the classifier should output high probabilities in and around the dam-
aged area, and relatively low probabilities in other areas of the structure. Therefore, we
expect to have high densities of predicted ones around the damaged area, and lower den-
sities of one’s otherwise (locations of interest sampled within a damaged area are class
1, while the other areas are labeled class 0). The post-processing framework aims to
capture these high-density areas on the structure while simultaneously discounting the
lower-density clusters thus enhancing the high-density areas and mitigating the effects
of isolated (low-density) classification errors. We accomplish this by designing filters
based on ideas from morphological image processing (MIP) [11]]. MIP is a collection
of non-linear mathematical operations related to the shape or morphology of features
in an image. Morphological operations apply a structuring element to an input image,
creating an output image of the same size, where the value of each pixel in the output
image is based on a comparison of the corresponding pixel in the input image with its
neighbors. The number of neighbors it considers is determined by the length or size of
the structuring element. The two most widely used operations are Erosion and Dilation.
Dilation is an operation that expands the boundaries of regions of interest within an im-
age, while Erosion does the opposite by shrinking the boundaries of regions of interest.
They can also be thought of as maximum and minimum filters for a region of interest. A
combination of these two basic operations forms the basis of many morphological filters.
More fundamental theoretical details about MIP can be found in [12].

For our analysis of the data, we designed a post-processing algorithm based on ideas
from MIP. Figure [2] illustrates the post-processing algorithm used for a flat panel in
the experiments described in the next section. For each sampled location p on the test
structure, we considered a circular structuring element of radius r, with p as the center
of this circle. Next, the total number of sampled locations on the structure within the
circular structuring element is computed, and the predictions made by the classifier for
each of these sampled locations are tabulated. If at least 7" % of the predictions are 1,
then the location of interest (i.e. center of the structuring element) is classified as 1. This
process is applied for each location of interest in the test structure. 7 is user-defined, and
was set empirically to maximize the performance of the algorithm. By repeating this
procedure for each sampled location, the damaged area of the structure (high-density



areas) are dilated, while isolated errors occurring at the classifier output (low-density
areas) are eroded thereby enhancing the overall damage map.

EXPERIMENTAL SETUP

The experimental setup and data used were the same as in [4]. We evaluate the per-
formance of the point-wise damage mapping algorithm using experimental data recorded
on a unidirectional composite plate 1.16 meters wide, 1 meter long and 2.5 mm thick,
made out of eight carbon fiber reinforced polymer (IM7/8552) plies. Thirty-two trans-
ducers (Steminc, Steiner Martin Inc., Doral, FL, USA) with approximate bandwidths
ranging from 150 kHz to 300 kHz were glued to the upper surface of the plate. The
sensors were distributed on an approximately hexagonal grid as shown in Figure [3| All
measurements were made by exciting the structure using a 50 ps long linear chirp signal,
with linearly increasing instantaneous frequencies from 150 to 300 kHz. This choice
was made to match the bandwidth of the transducers and achieve close to the maxi-
mum power transfer possible. A tapered cosine window was used to shape the excitation
signal with a parameter «,,=0.5 [13]. The parameter «, is the ratio of cosine-tapered
section length to the entire window length. For each measurement, the structure was
excited 200 times using the actuator, and the sensor signals were averaged to improve
the SNR. Baseline measurements were made on the structure prior to impacting it. The
plate was impacted at five different locations using a drop-weight impactor consisting of
a 5.6-kg hemispherical impactor and a plastic tube that guided the impactor. A 9.5-mm
thick rubber sheet was placed under the plate before impacting to mitigate deformation.
Data was recorded each time the structure was impacted. After performing the impact
experiments, a C-scan device was used to estimate the extent of damage in the structure
to compare with the results of the algorithm of this paper. The damage that resulted from
the five experiments was internal to the structure and was not visible on the surface of
the plate. Figure [3|also shows the outlines of damage resulting from the five impacts.

Before generating training and testing datasets, the acquired raw signals were pre-
processed and prepared for further analysis. The signals were windowed in time such
that only the zeroth order symmetric (SO) and anti-symmetric (AO) mode and their first
reflections were captured. The SO and the A0 wave modes are the fundamental guided
wave modes that represent the basic or fundamental wave patterns that can propagate
through a structure. The window length was determined from the geometry of the struc-
tures, the maximum distance between an actuator-sensor pair, and the wave velocities
of the two modes as obtained from the dispersion curves for the composite material
(IM7/8552). The processed signals were then passed through a bandpass filter to elimi-
nate low-frequency vibrations and any high-frequency electrical noise. The passband of
the bandpass filter was 150-300 kHz, which was approximately the same as the band-
width of the transducers.

To generate training and testing datasets, we randomly sampled damaged and healthy
locations. For each location, we extracted features as discussed in the previous section.
The baseline data for training was collected prior to impacts, and the inspection data
for training was recorded after the first impact. Hence, we evaluated our algorithm by
mapping the remaining four impact damages on the composite plate. The baseline and
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Figure 3. Locations of the transducers and impact damage on the structure. Black circles
indicate the sensor locations and damage outlines estimated by C-scan are in blue.

inspection data changed for each text case for which we assessed and mapped the damage
from different impacts and their combinations. For example, to assess the damage from
the second impact, the baseline signals were recorded from the plate after the first impact,
and the inspection data was recorded after the second impact. Similarly, to assess the
damage caused by the second and third impacts simultaneously, the baseline signals
were recorded from the plate after the first impact, and the inspection data was recorded
after the third impact. The machine was trained on signal features and the corresponding
labels obtained from 10000 locations sampled randomly on the structure before and after
the first impact. The 10000 locations were equally distributed between damaged and
undamaged areas. We evaluated our algorithm on 280000 locations sampled for each
test case which results in a sampling density of approximately 124 locations/cm?*, which
aided in reconstructing high-resolution damage maps.

For each sampled location in the datasets, the damage indices of the 20 closest
actuator-sensor pairs, along with the distance of the location to the direct paths con-
necting the same 20 closest actuator-sensor pairs were used as features to the classifier.
In this work, we used a k-NN classifier utilizing the Euclidean distance metric, with the
number of neighbors set to k = 100. The classification threshold was set to 0.35, and
the threshold 7 for post-processing was set to 0.25. The parameters mentioned above
were selected based on a preliminary empirical evaluation. Additional analyses of the
effect of individual parameters of the algorithm on the overall performance are planned
for the future. The performance of the point-wise damage reconstruction algorithm was
quantified using the Sgrensen-Dice index which is a metric that compares the similarity
between two datasets and is defined for two sets A and B as

|AN B

S(A, B) =2 21121
A B) =2 3]
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Figure 4. (a-c-e) The reconstructed damage map is shown in red before post-processing
for the composite plate with one, two, and four impact damages respectively (b-d-f) The
reconstructed damage map in red after post-processing for the same cases. Blue lines
indicate the boundaries of the damage estimated by C-scan.

For our problem A may be the set of damage locations on the structure identified us-
ing C-scan, and B may be the set that represents the estimated damage locations using
the algorithm of this paper. A Sgrensen-Dice index value of 1 implies a perfect match
between the sets while a value of O implies that the sets are disjoint.

RESULTS

Figure 4] shows the reconstructed maps along with their Sgrensen-Dice indices for
three different test cases. Table || shows the Sgrensen-Dice indices for all test cases
along with a comparison of the results from [4]]. For each test case, the Sgrensen-Dice
indices were computed for the estimated damage outline obtained by the algorithm of
this paper and the impact boundaries obtained using C-scan. It is clear from Figure [
and Table [I| that the algorithm presented in this paper is able to produce accurate damage
maps with high resolution and Sgrensen-Dice index greater than 0.9 for all the test cases.
The results further demonstrate the robustness of our algorithm in simultaneously map-
ping multiple damages with high accuracy as reflected by the improved Sgrensen-Dice
indices in Figure ). Moreover, the algorithm presented in this paper outperformed the
method of [4] for almost all cases. Both [4] and this paper used the same set of data. The
differences in the two sets of results were statistically significant with a p-value of 0.0023
(Wilcoxon rank sum test). Figure 4| (a-c) shows the reconstructed damage maps for three
test cases before post-processing. The respective Sgrensen-Dice indices are displayed



TABLE I. SORENSEN-DICE SIMILARITY INDICES FOR ALL TEST CASES.

Test Case Algorithm in [4] Algorithm of this paper
Impact 2 0.92 0.96
Impact 3 0.84 0.94
Impact 4 0.89 0.92
Impact 5 0.94 0.91

Impacts 2,3 0.88 0.95
Impacts 3,4 0.88 0.93
Impacts 4,5 0.76 0.92
Impacts 2,3,4 0.86 0.94
Impacts 3,4,5 0.83 0.92
Impacts 2,3,4,5 0.85 0.93

on the title for each test case. It is seen that the Sgrensen-Dice index is relatively lower
for the raw classifier outputs prior to post-processing. The errors that contributed to this
came from several isolated errors in the classifier output along with a clustered set of
incorrect decisions in damaged areas. Furthermore, a sequence of incorrectly predicted
damage locations can be observed along the boundaries. This occurrence could poten-
tially be attributed to the placement of some transducers, which aligns approximately
along the same boundaries as seen in Figure [3] Post-processing plays a critical role in
obtaining highly accurate damage maps by removing most of these errors as discussed
above. The current post-processing framework has the ability to detect damage whose
dimensions are larger than that of the circular structuring element. If this is not the case,
other types of structuring elements may need to be considered.

CONCLUSIONS

This paper presented a new guided-wave-based damage mapping algorithm for ac-
tive SHM systems. As part of the overall framework, we also designed a post-processing
algorithm employing morphological processing. Experimental results showed that for
sufficiently high sensor densities, the algorithm presented in this paper was able to
detect and characterize multiple impact damages on a unidirectional composite panel
accurately, and with comparable results to traditional C-scan-based ultrasound non-
destructive inspection systems, while also guaranteeing high-resolution damage maps.
Point-wise mapping allows for flexible sensor placement, enabling improved monitor-
ing of critical areas in a structure. Moreover, the algorithm is also relatively simpler
to implement compared to many traditional approaches. The current implementation of
the point-wise damage mapping algorithm relies on a supervised approach, requiring
training on data recorded from damaged structures, which is costly and in many situa-
tions, impractical. A more practical approach would involve adopting an unsupervised
system that exclusively trains on data from healthy structures. Furthermore, considering
the results presented in this paper were obtained for a relatively high sensor density, it
would be beneficial to investigate the impact of sensor density on both the algorithm’s
performance and the resolution of the resulting damage maps. Exploring the relationship



between sensor density and resolution can help determine the best sensor configurations
for accurate and cost-effective damage mapping. Overall, the evidence presented in
this paper suggests that the point-wise damage mapping algorithm is an attractive high-
resolution alternative to traditional guided wave SHM algorithms and has the potential
to enhance SHM capabilities for aerospace structures.
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