
Applicability of Data Augmentation Through 
Variational Autoencoder for Two-Dimensional 
Acoustic Emission Source Discrimination on 
Hollow Cylindrical Structures 
 

GUAN-WEI LEE, STYLIANOS LIVADIOTIS 
and SALVATORE SALAMONE 

 

ABSTRACT 
 

A data augmentation method is studied in this work to supplement previously 
proposed variational autoencoder (VAE) based acoustic emission (AE) source 
discrimination tool. The VAE model distinguishes the sources of collected AE signals 
through the multiple Lamb mode arrivals resulting from helical paths. It displayed the 
ability to discriminate pencil-lead-break (PLB) waveform dataset collected at a liquid 
nitrogen tank by source locations. VAE infers source-discriminative latent variable 
distribution conditioned on the observed waveforms and can be further applied to 
localization predictions for unseen waveforms. However, the prediction will be limited 
to source coordinates included in the training dataset. Therefore, this work studies the 
applicability of data augmentation using VAE to approximate waveform envelopes 
from sources coordinates that are not included in the PLB dataset, which are called 
target source in this study. Approximated waveforms of target source were introduced 
by interpolating the learned mode arrival characteristics to augment the original dataset. 
The augmented data set trained an updated latent variable distribution that accounted 
for the target source. Actual waveforms from target source were projected to updated 
latent space and validated the effectiveness of augment waveforms. This positive 
outcome provides confidence on pursuing data augmentation applications through VAE 
to assist AE localization. 
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INTRODUCTION 
 

Acoustic emission (AE) is a class of elastic wave that can be excited by transient 
release of stress due to structural defects. It has become a common passive monitoring 
target for many structural materials, including steel, concrete, and composite plates 
[1,2,3,4]. AE studies often surround making inferences on the collected data for defect 
localization [4] or classification [5]. Moreover, the recent hype in data-driven 
approaches, specifically deep learning applications [6,7], drives up the demand on 
acquiring larger dataset to ensure results. Common practices for simulating AE events 
are pencil lead break [10] (PLB) or impact testing that can take a significant amount of 



 

 

time to construct a desired dataset. Therefore, data augmentation methods are proposed 

to help create such dataset. Ai et al. [8] used numerical results from finite element model 

with added gaussian noises as an augmented dataset to replace AE data acquisition. It 

was applied in a single receiver zonal source localization exercise on a 0.30m by 0.61m 

stainless-steel plate. Guo et al. [9] conducted source localization with deep learning 

framework that the training dataset was augmented by deactivating channels of the 

recorded AE events, which have 8 channels for each incident. The above two works 

enlarged the size of dataset by adding flavors into the original data and improved the 

model performance.  

For metallic hollow cylindrical structures, the authors have proposed a source 

discrimination variational autoencoder (VAE) tool in previous work [11]. It used the 

multiple mode arrivals caused by helical paths and Lamb modes as characteristics to 

differentiate waveforms by the source coordinates. The two-dimensional source 

coordinates are reflected by the first two orders of helical paths and the path lengths can 

be observed by the delay of arrival between the Lamb modes. The VAE model captures 

these characteristics and was able to separate waveforms into source-discriminative 

latent variable distribution. Such latent variable distribution provides latent 

representation of the sources included in the training data, which will be called training 

sources, that can be used toward source localization when an unseen waveform is 

projected into the latent space. However, the prediction will be limited to training 

sources. Therefore, a data augmentation approach is proposed to approximate the not-

included source coordinates, called target sources, to expand the resolution on source 

localization. First, a latent representation of target source will be approximated by 

interpolating, proportional to the helical path length, from the learned mode arrival 

characteristics. Then, the generative decoder of VAE samples around the approximated 

latent representation and simulates waveforms from target sources. The generated 

waveforms supplement the collected dataset to account for the target source. The 

performance of the proposed data augmentation will be validated by mapping the actual 

waveform from target source onto the latent variable distribution trained on augmented 

dataset. Noted that this work will focus on the direct distance between AE source and 

receiver rather than the 2D source coordinate as a feasibility study of the proposed 

approach. 

The article is structured as follows: The methodology section introduces the mode 

arrival characteristics, VAE source discrimination and proposed data augmentation 

method. The result section reviews the performance of the proposed method. The 

conclusion section discusses the applicability of data augmentation made by VAE and 

future works. 

 

 

METHODOLOGY 
 

Previous work [11] has presented that the lengths of the first two orders of helical 

path is a mapping for two-dimensional (2D) source coordinates. The lengths of helical 

paths are retrieved from waveforms by the delays between two Lamb mode arrivals: 

fundamental symmetric (S0) and anti-symmetric (A0) modes. The first order helical 

path length can be observed by the delay between first S0 mode and first A0 mode; the 

second order helical path length reflects in the delay between first and second S0 mode 

arrivals. A variational autoencoder was implemented to capture the described mode 



 

 

arrival characteristics and provided source-discriminative latent variable distribution to 

differentiate the source coordinates of the collected waveforms. VAE captures the mode 

arrivals by fitting mixture normal distribution density function to the waveform 

envelopes. The collected dataset was labeled by the source coordinates that the latent 

representation of the coordinates included in the training dataset can be derived from 

taking the expectation over latent variable distribution of waveforms from the same 

source. This article narrows down the source discrimination object into only the direct 

distance between source and receiver as an initial studying on applicability of data 

augmentation done by VAE. Therefore, the data augmentation method exercise of this 

article focuses on the time delay between first S0 and A0 modes, which is the 

characteristic that distinguishes the direct distance.   

Figure 1 presents the simplified VAE source-discrimination workflow on the direct 

distance, which is the 1st helical path. This modeling method can make predictions by 

projecting unseen waveforms onto a trained latent space that the prediction will be made 

by the closest latent representation. However, it will heavily rely on the training dataset 

to construct dense enough latent representation grids for prediction resolution. A data 

augmentation approach is proposed to supply waveform envelopes of sources not 

included in the training dataset. 

 

 

 
 

Figure 1. Simplified source-discriminative VAE workflow (a) sources of collected waveforms at a 

2.42m liquid nitrogenous tank, (b) mode arrivals reflecting the change in direct distance and (c) the 

source-discriminative latent variable space. 

 

The proposed data augmentation leverages the source-discriminative latent variable 

space of the VAE model to produce approximated waveform envelopes of target source, 

which is the source not included in the training dataset. In a trained VAE model, a set 

of mode arrival characteristics is learned from the sources included in the training 

dataset, which are named training sources in this study, motivate the source-

discriminative latent space, and can be modeled by normal distribution: 
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where (𝜇𝑖, 𝜎𝑖
2, ∅𝑖)  are the mixture normal distribution parameters describing mode 

arrival characteristics and (𝝁𝑡𝑟𝑎𝑖𝑛𝑗 , 𝝈𝟐𝑡𝑟𝑎𝑖𝑛𝑗) are the mean and variance of learned 

parameters on the 𝑗th training source. For this direct distance problem, 𝝁𝑡𝑟𝑎𝑖𝑛𝑗 of 

training locations are proportional to the 1st helical path and 𝝈𝟐𝑡𝑟𝑎𝑖𝑛𝑗
 captures the 
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uncertainties embedded within the data acquisition process. Therefore, parameters for 

waveform envelopes from target source are inferred from these learned characteristics. 

Specifically, it is sampled from a normal distribution with mean interpolated by the ratio 

of 1st path lengths and averaged variance of the two training sources: 
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where ℎ1 is the 1st helical path length, 𝜑 is the ℎ1 ratio between training and target 

sources. This augmentation process estimates the time delay between S0 and A0 mode 

arrivals for target source with the uncertainties observed in the collected waveforms. 

With the inferred mixture normal parameters, waveform envelopes to augment training 

dataset are provided by plugging the parameters into the density function: 

 

�̂� = 𝑚𝑖𝑥𝑡𝑢𝑟𝑒((𝜇𝑖, 𝜎𝑖
2, ∅𝑖)

𝑡𝑎𝑟𝑔𝑒𝑡) (4) 

 

�̂� = (𝒙, �̂�) (5) 

 

which 𝒙, �̂� indicate the waveform envelopes from training dataset and interpolated 

parameters; �̂� is the augmented dataset. An augmented latent variable distribution for 

�̂� is trained to provide an updated latent variable distribution that takes target source 

into account. The performance will be reviewed by prediction accuracy of updated latent 

space on actual waveforms from the target source. For this applicability study, three 

sources from the PLB dataset collected at the 2.42-meter diameter liquid nitrogen tank 

are used which the locations are already shown in Figure 1.a. Location 1 and 3 are the 

training sources and location 2 is the target source. Each location has 20 waveforms that 

the ones from training sources will be used in training and the waveforms recorded at 

target source are used for reviewing prediction accuracy of the augmented latent space.  

 

RESULTS 

 

 Figure 2.a displays the latent space of VAE model conditioned on training 

sources. The model was able to separate the waveform envelopes from the two training 

sources. Figure 2.b shows the distribution of mode arrival characteristic, learned by 

VAE, of the mixture normal component that describes the arrival time of A0 mode. It 

conforms to the observed A0 mode delay shown in Figure 1.b. The distribution of arrival 

characteristic used for approximating waveform from target source is shown in red at 

Figure 2.b. The parameter was sampled by normal distribution center on the mean 

interpolated by 1st helical path length with averaged variance of learned characteristics. 

Approximated waveforms for target source were generated by the sampled parameters 

and were mapped back into the latent space of training sources in Figure 2.a. The 

approximated waveforms showed a similar distribution as Figure 1.c, which was trained 

on the full three sources. The model generated waveforms were then augmented into 

the original training dataset. 



 

 

 Figure 3 shows the latent variable distribution of augmented dataset. The 

augmented latent space presented source-discrimination regardless the waveform 

envelopes are collected in experiment or model generated. Moreover, actual waveform 

envelopes from target source were projected onto augmented latent space after training. 

It can be observed that model generated waveforms have good mixing with actual 

waveforms from target source that supports the effectiveness of proposed data 

augmentation approach. Taking the closest latent representation as a predictor, the 

presented augmented latent space has 90% accuracy on correctly identifying the target 

source when actual waveforms were sent into the model. The two wrong predictions are 

the ones closer to location 1 cluster. As a result, the proposed data augmentation 

demonstrated its ability on approximating waveforms from sources not included in the 

training dataset under this simplified localization study. 

 

 

 
 

Figure 2. Data augmentation process (a) latent space of training sources and (b) learned mode arrival 

characteristic  
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Figure 3. Augmented latent space with actual waveforms from target source overlayed for performance 

review 

 

 

CONCLUSION 

 

A data augmentation approach is proposed to provide finer resolution on 

localization prediction of previously presented waveform-based localization VAE 

model. The augmented dataset accounts for AE waveforms from source coordinates that 

are not collected in experiments. A simplified modeling that focused on the direct 

distance between source and receiver were implemented to study the applicability of 

proposed data augmentation method. The result suggested that the augmented dataset 

assisted the model to identify a waveform from a source not included in the training 

dataset. Future work on this method includes expanding the approach to 2nd helical path 

that completes the full 2D source-discrimination. Also, it will include more training 

sources and generalize the approach to the entire surface of hollow cylindrical structure. 

Lastly, even though this augmentation method is manipulating the mode arrival time 

resulting from change in path lengths, it can be also be tweaked into compensating the 

velocity shifts. For example, this augmentation approach has potential to help training 

dataset adopting velocity changes under different temperature conditions. 
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