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ABSTRACT 

It has been demonstrated that acoustic-emission (AE) based inspection of structures 
can offer advantages over other types of monitoring techniques in the detection of dam- 
age; namely, an increased sensitivity to damage, as well as an ability to localise its 
source. These advantages have resulted in the use of AE-based systems in Structural 
Health Monitoring (SHM) applications becoming an increasingly popular research topic. 
The strong correlation between features of AE-waves and the sources that generate them 
can be exploited to reveal information of the health-state of a structure in a non-invasive 
framework. This idea has been demonstrated successfully in the early detection of crack- 
growth, nucleation, corrosion, dislocation slips, and cavitation, among others. There 
are, however, numerous challenges associated with the analysis of AE-data. Some of 
these challenges include sensor placement, calibration, operational variations, sources 
of noise, and manipulation of large-size datasets. These challenges must be addressed 
carefully if one wishes to implement an AE-based system in SHM applications. Al- 
though the analysis of AE-data can be complex, its advantages can be meaningful in the 
development of an optimised maintenance schedule, reducing costs associated with un- 
necessary repairs, or by preventing potentially catastrophic outcomes from overlooking 
an emerging defect that can be detrimental to the safe operation of the structure. In this 
paper, AE data recorded from a full-scale helicopter blade are processed to develop a 
probabilistic model designed to predict the location of potential sources of damage. The 
following work addresses some of the challenges related to the construction of ∆T maps 
and proposes a novel strategy for identifying optimal sampling points, eliminating the 
need for extensive data collection for training. 

 

INTRODUCTION 

A research topic of increasing popularity in Structural Health Monitoring (SHM), is 
the use of Acoustic Emission (AE)-based techniques for damage detection. An AE is a 
sudden release of strain energy in an elastic medium [1], resulting in the propagation of 
very low amplitude waves characterised by frequencies in the ultrasonic range. One of 
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the main reasons these waves are of interest in SHM, is because damage in structures
will promote the generation of AE activity [2]. Therefore, monitoring the progression
of features extracted from AE-waves can be used to determine the health-state of the
structure. Several promising results have been demonstrated in the literature when im-
plementing AE-based monitoring techniques, with some examples including their appli-
cation in bearings [3, 4], gears [5] and aerospace structures [6, 7].

This paper, however, is concerned with another attractive advantage of implementing
AE-based techniques; that is, the possibility to localise the source of damage. Having
multiple AE-sensors acting simultaneously, one can determine the location of an emerg-
ing defect by measuring the Time of Arrival (ToA) of a wave to each sensor.

A traditional approach to AE source localisation is based on triangulation, where the
source is determined to be at the intersection of the contours resulting from calculating
the differences in ToA (∆T ) from multiple sensor-pairs [8, 9]. Localisation may also
be approached as an optimisation problem, where the origin of a source is estimated by
minimising the difference between the recorded ∆T and values calculated at candidate
locations.

Although these methods have been demonstrated to work successfully, there are a
few associated challenges that can be arduous to overcome. For example, the propa-
gating path of an emitted wave is an important factor to consider, as localisation be-
comes increasingly more difficult when dealing with composites, or when obstructions
are present in the propagating path of the wave. Some progress has been achieved with
anisotropic materials [10, 11], but it may still be challenging to analytically determine
how the wave travels through the medium.

Data-based techniques have been developed for this type of application by instead
learning statistical models that are uniquely concerned with the ∆T measurements [12].
The idea behind this approach is to artificially construct a map of ∆T values at various
locations, to then match the ∆T from a real AE to those on the map. A probabilistic
framework for this technique has also been explored and implemented successfully in
[13, 14].

The problem is that ∆T maps can be laborious to produce. A vast collection of data
may be required to cover the entire surface where damage might be expected. The ∆T
maps must also be fine enough for accurate predictions, considerably increasing the size
of the dataset needed for the learning process. In this paper, the efficient construction of
a ∆T map is therefore explored, where a Bayesian optimisation approach is used for an
optimal selection of sampling points. The subsequent sections detail the experimental
procedure undertaken for data collection, outline the employed modelling strategies, and
subsequently discuss the obtained results from the proposed methods.

EXPERIMENTAL PROCEDURE

The experimental set-up studied here was designed for a fatigue test of the helicopter
blade. An eccentrically-loaded motor attached to the blade was tuned to have the blade
resonate in its second mode of vibration, to promote the extension of fracture somewhere
near the root.

The detection of the early onset of fracture in fatigue is possible with the use of
AE-based monitoring systems [7,15]. However, the effectiveness of monitoring the pro-



Figure 1. Helicopter blade and AE sensor configuration.

gression of fracture during the fatigue test relies on correctly characterising the detected
AE waves. By having the monitoring system also locate the (possibly) various sources
of AE, one can identify and isolate those deriving from damage. This consideration is
important for correlating the features extracted from AE waves with the potential fail-
ure modes of the structure, thus highlighting the need for a robust localisation system.
In [6, 16], for example, localisation techniques are exploited to directly characterise AE
activity emerging near a developing crack.

The configuration of AE sensors used here is shown in Figure 1, where six sensors
can be seen attached near the root of the blade. This set of sensors comprised three WD
differential and three Micro 30D differential Mistras AE sensors. All sensors were pre-
amplified with a 2/4/6 Switch Selectable Gain set to 20dB. The data acquisition system
used was a Mistras Micro-II compact PCI AE Chassis.

In order to develop a localisation monitoring system, it was first necessary to collect
enough data for training the model. The training set was therefore gathered by measuring
the ∆T values of waves propagating through the blade. By knowing the location of the
source beforehand, one can record the time it takes for the wave to trigger each sensor
from its origin. The procedure was then followed with the construction of the ∆T maps
for each sensor-pair combination. In this case, 15 unique sensor-pair combinations were
possible.

A standard way to simulate realistic broad-band AE waves is by breaking pencil-
leads on the surface of the blade. In this way, one can choose the location of the source
using a Hsu-Nielsen device [17]. A collection of AEs can then be artificially generated
at different locations and the respective ToA recorded to gather a training set. The chal-
lenge with this approach is on deciding where to sample on the blade. Intuitively, a
grid could be placed over the blade with uniformly-spaced sample-points. The spacing
between sampling points will determine the precision of the localisation algorithm, and
thus a finer grid might be preferred in most applications. Unfortunately, there is the prac-
tical expense of having to sample from an inconveniently large number of points. The
trade-off between accuracy and cost of the implementation will be application specific,
warranting the need for an autonomous solution that can provide a balance between both.

Given that these samples had to be carried out by hand, a compromise was made
in the fineness of the grid by having a sample-points spaced by 10mm. Nevertheless,



Figure 2. (Top) ∆T measurements recorded from sensor-pair 3-4. (Bottom) Inferred GP
posterior mean. Red dots indicate the locations of sensors 3 (right) and 4 (left).

additional sample-points were included in between layers nearest to the root, since the
fatigue test was designed to promote the extension of fracture in this area. The grid was
designed on a graph-paper and was then wrapped over the blade to mark the locations of
the sampling points on its surface. These points can be seen faintly in Figure 1.

Having established a sampling grid, the Hsu-Nielsen device was used to generate an
AE-wave at each location. The waves were recorded and stored to then determine their
true ToA at each sensor. This last step was necessary, given that the data acquisition
system only places a time-stamp at the instance in which a threshold crossing occurs,
which can happen even after the actual onset of the wave is picked up by the sensor(s). To
account for this consideration, the true ToA of the recorded AE-waves can be determined
based on the Akaike Information Criterion (AIC) [18]. The AIC-picker technique can be
defined by the following equation,

AIC(t) = t log(V(Rw[1 : t])) + (T − t− 1) log(V(Rw[t : T ])) (1)

where at each time step t, the entropy is calculated before and after each time step. The
entropy of the windowed signal, Rw, will return a minimum when the proportion of the
signal up to the time step t is uniquely composed of uncorrelated noise, happening to
also correspond to the onset of the AE-wave. The indexing in Rw indicate the range of
values used to calculate the variance.

The results of the difference in time of arrival are shown in Figure 2 (top) for the
sensor-pair 3-4. Some areas of the blade could not be sampled because of the sensors
themselves occupying the space, or the limited accessibility because of the test-rig con-
figuration, resulting in some sparsity that can be seen in the results. A somewhat gradual
transition can be noted along the blade, which is to be expected in an ideal scenario,
but a few inevitable exceptions can also be observed that appear in dispute with this
trend. These “anomalous” data could be the result of noise in the measurements, mainly
attributed to the complexity of the propagating paths in the blade.



A schematic of the internal structure of the blade was not available, but it is known
to be made of a carbon composite with a complex internal honeycomb structure. The
propagating paths could have therefore resulted in complex wave dispersion and/or at-
tenuation that made it difficult to discern background noise from actual AE activity. In
particular, waves originating furthest from a sensor were the most cumbersome to cap-
ture. After curation, the dataset comprised a total of 595 sampled points, and then was
split into a training and test set, where 50 random sample points were allocated to the
test set.

LOCALISATION STRATEGY

The localisation strategy used in this work follows the techniques explored by Jones
et al. [19]. This approach is based on a regression model that maps a location on the blade
to a corresponding difference in ToA, i.e. (x, y) → ∆T . Given the data gathered from
the lead-breaks, it is possible to construct a model capable of returning the probability
of observing a ∆T value at a new location (x∗, y∗). In this case, a Gaussian Process
(GP) regression model [20] was chosen to predict ∆T values over the continuous space
covered by the grid. Fundamentally, the GP attempts to model functions of the form,

t = f(x) + ϵ, ϵ ∼ N (0, σ2
n) (2)

where t is a target value for a given input x, f(x) is some function modelled by the GP
and ϵ corresponds additive Gaussian noise with zero mean and variance σ2

n. The GP is
defined by two sets of input points x and x′ as,

f(x) ∼ GP(m(x), k(x, x′)) (3)

Making predictions for a new test point t∗ involves first taking the joint Gaussian
distribution over all points of interest,(

t
f∗

)
∼ N

[(
m(X)
m(x∗)

)
,

(
K(X,X) + σ2

n K(X, x∗)
K(x∗, X) K(x∗, x∗)

)]
(4)

where X is used to denote a matrix formed of all the N training inputs and t is a vector
of the corresponding set of N target observations. The distribution over the set of latent
functions f∗, conditioned on the observations, can be expressed as,

p(f∗|t) = N (E[f∗],V[f∗]) (5)

where the posterior mean E[t∗] and variance V[t∗] are defined as,

E[f∗] = m(X∗) +K(X∗, X)(K(X,X) + σ2
nI)−1t (6)

V[f∗] = K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)−1K(X,X∗) (7)

As before, the notation X∗ now includes all the test inputs. The covariance (ker-
nel) function must be chosen to fully specify the GP. This function defines the similarity
between any two sets of input points, resulting in a symmetric semi-positive square co-
variance matrix K. An example of a commonly-used covariance function would be the
Matérn 3/2 function,
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l

)
, r = ||x− x′|| (8)

where σ2
f and l are the hyperparameters of the GP and characterise the signal variance

and the length scale of the functional form of f(x), respectively. This particular co-
variance function is recommended when modelling physical processes [21]. Here, the
Quantum-Behaved Particle Swarm (QBPS) optimisation algorithm [22] was employed
to find the optimised hyperparameters that maximise the marginal likelihood.

Implementing the GP with the results presented in the previous section, returns an
interpolated mapping over the space covered by the grid, as shown in Figure 2 (bottom).
By repeating the implementation of the GP on all 15 sets of results (corresponding to
each sensor-pair), one can make use of these models to pinpoint the most likely location
from which an AE-wave may originate.

However, in this form, the predictive distribution cannot directly provide the location
of a new AE wave. The location can be determined by instead calculating the likelihood
of observing the set of ∆T values for each sensor-pair, given the functional mapping
(x, y) → ∆T learned from the training set. For the set of J = 15 models, the log-
likelihood for each model mj can be assessed as,

log p(t∗,j|D, (x∗, y∗),mj) = −1

2
logV[f∗,j]−

(t∗,j − E[f∗,j])2

2V[f∗,j]
− 1

2
log 2π (9)

where D = (x,y) denotes the location of all data-points in the training set, and t∗,j is
the predicted ∆T at the new location (x∗, y∗), given by the jth sensor-pair. The log-
likelihood maps produced by assessing equation (9) will display contours of the most
probable locations of t∗,j . A unique solution is generally found at the intersection of
the contours evaluated for each sensor-pair model. Mathematically, this outcome can be
derived by marginalising each model. That is,

p(t∗|D, (x∗, y∗)) =
J∑

j=1

p(t∗,j|D, (x∗, y∗),mj)p(mj) (10)

If each model is assumed to have equal importance, the marginalised probability
distribution is given by,

p(t∗|D, (x∗, y∗)) =
J∑

j=1

p(t∗,j|D, (x∗, y∗),mj) (11)

which is simply the sum of the likelihood maps for each sensor-pair. The most likely
location will therefore be given by the point (x∗, y∗) that maximises equation (11). The
outcome of this approach for an arbitrary test point is shown in Figure 3.

BAYESIAN OPTIMISATION STRATEGY

As mentioned above, the sampling grid is subject to some practical limitations. In
this section, the idea of developing an optimum grid is explored employing Bayesian



Figure 3. Prediction of the GP model for an arbitrary test point. The red x marks the true
location of the AE source.

Optimisation (BO) [23]. In a BO scheme, an objective function is optimised by finding
its local maximum (or minimum) with as few parameter proposals as possible. This
method does not rely on gradients and can be an attractive alternative in applications
where the objective function cannot be easily determined or is expensive to compute.

The objective function is approximated with a surrogate function, which is usually
chosen to be a GP. A new proposal reveals its corresponding output of the objective
function, followed by conditioning the surrogate GP with the revealed observations.
Deciding on the best proposal is determined by an acquisition function. A variety of
acquisition functions exist, but the commonly used Expected Improvement (EI) [23] is
adopted here. The EI is defined as,

EI(x) =

{
(µ(x)− f(x+)− η)Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0
(12)

where µ(x) and σ(x) are the mean and standard deviation of the surrogate GP posterior,
respectively. Φ(Z) and ϕ(Z) correspond to the Cumulative Density Fucntion (CDF) and
Probability Density Function (PDF) of the standard normal distribution, evaluated with
respect to Z = (µ(x)− f(x+)− η)/σ(x), respectively.

Acquisition functions suggest new proposals by balancing the exploitation and ex-
ploration of the search-space. In short, exploitation refers to sampling more from areas
that improve the output of the objective function, while exploration promotes sampling
from areas of high uncertainty. The parameter η in equation (12) can be adjusted to
control the amount of exploration.

Although used for finding optimal parameters, the BO can be adopted to select the
best points to sample from in the ∆T grid. The idea here is to minimise the number
of samples one would need to construct a grid simple enough to determine the location
of new AE-waves. Simultaneously, this approach would also avoid having to decide on
the density of the grid, since new samples are proposed sequentially in an active setting.
This idea has been explored in [24], where a BO scheme is used to promote sampling
from damaged areas in specimens for an autonomous ultrasonic inspection.

What remains is to decide on the objective function for this scenario. An ideal objec-
tive function may be one that promotes sampling in areas that yield the highest gain in
accuracy while allowing for some exploration in areas of high uncertainty in the blade.
The objective function used here is one constructed by calculating the reduction in the
Root-Mean-Square Error (RMSE) that a single sample-point in the training set provides
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Figure 4. RMSE calculated with data sampled from a random process (blue) and by
using the EI acquisition function (red). The RMSE calculated from a complete dataset
has been included as a reference (black dashed line).

to the localisation of the AE-waves in the test set. The RMSE is expressed as,

RMSE =

√∑
x,y((x, y)pred − (x, y)true)2

Ntest

(13)

where Ntest is the number of samples in the test set. If assessed for each point on the
grid at a time, the surrogate objective would look like that shown in Figure 5 (top). One
should note that this objective corresponds to the final form that the surrogate would
achieve if all sample points were taken into consideration. In practice, this objective
function is approximated, as samples are sequentially introduced.

RESULTS AND DISCUSSION

To demonstrate the implementation of the BO strategy for an efficient ∆T map con-
struction, a scenario is considered in which limiting resources only allow for 100 samples
to be taken. These samples would follow on the test set already collected at 50 random
locations within the borders of the grid. The results of the sequential sampling are shown
in Figure 4. A series of random-sampling strategies were also performed to demonstrate
the benefits of choosing an optimal (under the BO) collection of sampling points. The
RMSE calculated from having sampled all training data-points has also been included as
a reference.

A few observations are worth addressing from these results. Firstly, the BO strategy
appeared to have found a sequence of samples that returns a reduction in error at a greater



Figure 5. (Top) Objective function over the search-space. (Bottom) Red circles indicating
the sampled locations proposed by the EI acquisition function.

rate than the random sequence. It may be possible to find a better combination of points
at random but at the high risk of having to reiterate the test if otherwise. The results
from the random test also appear to show that some data-points can negatively affect
the performance of the model. This outcome could be explained by the “anomalous”
measurements described above. It may be necessary to repeat this study but with a
“clean” dataset gathered from a simpler structure, such as an aluminium plate.

Another highlight can be discussed when observing the candidate points selected
for sampling in Figure 5 (bottom). A higher concentration of samples can be seen to
have been taken around the global maximum of the objective function. It is important to
note, however, that the aim here deviates from the purpose of a conventional Bayesian
optimiser in finding a unique solution that maximises the objective function. Although
this was the intention of the proposed strategy, some substantial exploration had to be
enforced by increasing the parameter η. This last step is important since the accuracy
of the localisation model improves with a comprehensive representation of the search-
space, which is achieved by gathering data covering the entirety of the blade. A balance
of these aspects is nicely encapsulated by the acquisition function.

Finally, it is worth acknowledging that the proposed objective function is by no
means the only option one could use in practice. In [24], for example, the objective
function is based on novelty detection techniques used in SHM. The success of this ap-
proach may rely on the correct choice of the objective function, acquisition function, and
correct tuning of the parameters involved. Deciding on these parameters will naturally
depend on the structure and application at hand.

CONCLUDING REMARKS

As demonstrated in this paper, BO can be used for optimal sequential sampling of
∆T maps. The construction of these maps is a requisite in the implementation of prob-



abilistic techniques for damage localisation in SHM. The proposed strategy is based on
an active scheme that proposes an optimal candidate point for sampling based on EI;
therefore, reducing the number of necessary measurements needed for the construction
of a robust localisation system.

Some considerations were mentioned; mainly, deciding on the best objective func-
tion and careful tuning of the corresponding parameters to balance exploitation and ex-
ploration of the studied surface.

Future work will involve using the developed localisation techniques to identify frac-
ture extension during the fatigue test. Additionally, the presented ideas will be explored
further with the implementation of different objective functions, or a combination of
them in a multi-objective optimisation scheme.
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