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ABSTRACT 
 

This paper describes the optimization of a computer vision-based technique for 
visualizing subsurface barely visible impact damage (BVID) in composite structures. 
The system uses a piezoshaker for exciting a guided wavefield with a sweeping 
frequency in the near-ultrasonic frequency range, a digital camera or stereo-camera 
for recording surface dynamics, and an energy-based damage imaging condition for 
identifying local resonance from standing waves within damage regions. The method 
for extracting surface dynamics from the videos was optimized, evolving through 
three techniques – 3D digital image correlation (DIC), off-axis 2D DIC, and image 
decorrelation – with the ultimate goal of creating a practical and efficient vision- 
based method for BVID inspection. Each proposed technique was applied to inspect 
two CFRP composite-honeycomb panels that had been subjected to low-velocity 
impacts. Damage images produced with all techniques for a 100-mm  100-mm FOV 
using a three-second video show accurate damage imaging ability. The processing 
time required by the optimized decorrelation technique for extracting surface 
dynamics is approximately 15 times less than 3D DIC and 5 times less than off-axis 
2D DIC. The increased efficiency, reduced complexity, and demonstrated accuracy 
of the system suggests a high potential for practical baseline-free and in-time 
computer-vision-based structural health monitoring (SHM) and baseline-free 
subsurface damage imaging for critical composite structures. 

 
 

INTRODUCTION 
 

Carbon fiber reinforced polymer (CFRP) composites and composite honeycomb 
structures have received wide acceptance for use in lightweight structures in the 
aerospace and automotive industry; however, with their adoption comes unique 
challenges for inspection. Compared to metallic alloys, composites are much more 
vulnerable to impact damage due to the brittle behavior of the matrix and low 
through-thickness strength [1]. Low-velocity impacts can create sub-surface damage, 
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typically in the form of layer delamination and matrix cracking, which can 
significantly reduce structural integrity while leaving little evidence on the surface 
[2, 3]. This type of damage, known as barely visible impact damage (BVID), poses a 
significant challenge for ensuring vehicle safety since traditional visual inspection 
techniques cannot confidently detect this damage. Thus, more robust non-destructive 
inspection (NDI) and structural health monitoring (SHM) methods are needed to 
ensure safety and reduce inspection time and costs. 

With the aim of ensuring the safety and serviceability of structures in a practical 
manner to supplement or replace visual inspection, computer vision techniques have 
been explored, which rely on image processing algorithms to extract meaningful 
information from images automatically and objectively [4,5]. In contrast with other 
sensing methods for SHM, digital cameras can sense the entire region of interest 
(ROI) instantaneously with high spatial density since each pixel acts as a sensor. 

The continuous advancement of integrated chip technology has enabled computer 
vision to expand to more complex techniques for local damage detection, like digital 
image correlation (DIC). DIC is a vision-based technique that is well-established as 
a tool for non-contact measurement of surface deformations or contours in the field. 
DIC works by comparing images of the structure’s surface, on which a random 
speckle pattern has been applied, before and after deformation. By matching unique 
areas of the speckle pattern, called subsets, in the deformed and reference image, the 
local displacement can be computed. By considering multiple subsets throughout the 
image, the surface deformation can be obtained across the entire ROI.  

Standard DIC techniques can be broadly divided into two categories: 2D DIC and 
3D DIC. 2D DIC uses a single fixed camera to capture in-plane displacements of 
planar surfaces, while 3D DIC uses a stereo pair of cameras to measure all three 
components of surface displacement (in-plane and out-of-plane) based on 
triangulation. 3D DIC is generally considered more robust since it can be applied to 
more-complex geometries and is not limited to in-plane measurements; however, the 
stereo system is much more complex than the system for 2D DIC and requires a 
detailed calibration procedure. Additionally, the stereo matching required for 3D DIC 
increases the processing time required by a factor of approximately three compared 
to 2D DIC. In addition to the standard DIC techniques, off-axis 2D-DIC exists with 

 
 

TABLE I: COMPARISON OF IMAGE PROCESSING TECHNIQUES FOR EXTRACTING 
SURFACE MOVEMENT FROM IMAGES 

 3D DIC Off-Axis 2D DIC Image Decorrelation 

Extraction 
Feature 

Displacement in all three 
directions in space 

(vector) 

Displacement in two 
directions relative to 

camera in pixels (vector) 

Decorrelation magnitude 
relative to the camera 

(scalar) 

Extraction 
Method 

Shape function matching 
and triangulation 

Shape function matching 
(with an optical axis 

oblique to the surface) 

Direct comparison of 
matching pixel groups 

(with an optical axis 
oblique to the surface) 

Hardware 
Requirements 

Two cameras in a 
calibrated stereo-system 

Single camera Single camera 

Displacement 
Limits 

Can be multiple pixels Can be multiple pixels Must be sub-pixel 

Computational 
Complexity 

Very high  High  Low  

Data Post-
Processing 

Time 
Very slow (~30×) Slow (~10×) Rapid (~1×) 

 



 

 
 

special applicability, which uses a single camera whose optical axis is oblique to the 
test sample surface to measure transverse surface displacement [6]. Recent advances 
and applications of DIC have been reviewed by Pan and Sutton et al. [7,8]. 

Ultrasonic guided-wave-based techniques for SHM utilize guided (or Lamb) 
waves for inspection that can propagate long distances across plate-like structures 
with little attenuation and interact with any discontinuities [9]. By sensing and 
reconstructing the wavefield, evidence related to the location and shape of any 
damage within the structure, such as reflections and standing waves, can be extracted 
with a damage imaging condition to visualize the hidden damage. In 2019 in the 
authors’ lab, a proof of concept for sensing guided waves using DIC to create damage 
images was demonstrated for the first time [10]. 

This paper expands on previous work to significantly improve practicality. The 
most enabling improvement is a total wave energy (TWE) damage imaging condition 
that is sensitive to the higher wave energy produced by standing waves trapped within 
damage boundaries [11]. Additional information about this TWE imaging condition 
can be found in the authors’ 2023 publication [11]. This energy-based method does 
not require the Nyquist sampling condition to be met since wave mode analysis is not 
required, so relatively low frame rates are sufficient. Also, only the magnitude of 
surface change between images is of importance, so tracking displacement through 
subset matching is not necessary. 

Decorrelation is a common algorithm associated with computer vision and is 
often used for defect detection applications involving the quantification of visible 
irregularities in a current image compared to a reference pristine image [12]. 
However, a different, non-traditional use for image decorrelation is proposed in this 
work, which relies on decorrelation to determine the magnitude of change in a 

 
 

 
 (a) Panel A Case I (b) Panel A Case II 

 
 (c) Panel B Case I (d) Panel B Case II 
 
Figure 1. The dimensions and layout of the two composite-honeycomb panels with subsurface BVID 

used for validation with different piezoshaker locations. The speckled region represents the area 
covered by the speckle pattern and the field of view (FOV) of the cameras. 
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structure between a dynamic and static state, proportional to displacement. Like DIC, 
this method requires a black-and-white speckle pattern to be applied to the surface. 
Surface movement will shift the speckles, causing a change in the grayscale intensity 
of the pixels capturing the speckle edges, as long as the movement is subpixel. 
Decorrelation can quantify this change in an efficient pixel-by-pixel manner, making 
it a prime candidate for replacing DIC when used with the TWE criterion since it 
should be sensitive to areas of larger displacement. 

This paper describes the optimization of the technique for extracting surface 
dynamics from images since this step has a large influence on the processing time, 
sensitivity, and required complexity of the complete damage imaging system. In the 
next section, the experimental methodology and system components are described in 
detail. The subsequent sections then follow the steps of system development and 
optimization: first, 3D DIC for subsurface damage imaging was first attempted to 
show that standing waves could be captured using white-light imaging [11]; then, 
off-axis 2D DIC was used to demonstrate that a single camera is sensitive enough for 
damage imaging; and finally, decorrelation was applied to reduce system complexity, 
avoid the complex DIC algorithm, and significantly reduce processing time. The 
advantages and disadvantages of each for this application are discussed in Table I. A 
comparison of the techniques and comments on the success of the study are finally 
presented in the conclusion section. 
 
 
EXPERIMENTAL METHODOLOGY 
 

Two CFRP composite honeycomb panels, shown in Figure 1, were used to 
demonstrate the proposed technique. Both consist of a 25.4mm-thick aluminum 
honeycomb core sandwiched between two 6-ply CFRP composite face sheets. Each 
has in-plane dimensions of 178 mm ´ 254 mm. Additional details on the panels and 
their material properties can be found in Leone et al. [13]. 

To create BVID with which to test the proposed method, each panel was 
subjected to a controlled, 2-joule impact via a drop tower. This low-velocity impact 

 
 

 
 (a) (b) 
 
Figure 2. UT scans of the damage located at each impact location on the surface of (a) Panel A and 
(b) Panel B. The C-scan region shown corresponds to a 50.8 mm ´ 50.8 mm region centered around 

the impact location. Below are B-scan images, showing an exaggerated view of the indentations. 



 

 
 

created subsurface damage in the form of delamination. Figure 2 shows ultrasonic C-
scan images of the resulting damage in each panel. Though dents were created, these 
can barely be felt by running a finger over the surface and there is no visual evidence 
of impact. 

With DIC, the uniqueness of each subset is assured by applying a random speckle 
pattern to the plate over the region of interest. A speckle size that is four times the 
pixel size was chosen to avoid aliasing [14]. A speckle pattern generator software 
from Correlated Solutions, Inc. was used to generate a pattern, which was then 
printed on standard copy paper with a high-resolution (1200 ´ 2400 dots per inch) 
laser printer. The paper speckle pattern was carefully applied to the plate with a thin, 
even layer of white multi-purpose PVA glue. This method provides a quick, 
temporary, and inexpensive method for speckle application that does not permanently 
alter the surface. Since the proposed decorrelation technique also requires a black-
and-white speckle pattern for quantifying changes based on grayscale intensity shifts, 
the same speckle pattern used for DIC was also used for decorrelation. 

To excite the frequency content necessary to support local resonance in the 
damage regions of the panels, a high-power isi-sys PS-X-04 piezoshaker was used. 
This was attached to the surface of the panel on the same side as interrogation using 
a vacuum suction cup attachment. To promote sonic penetration into the panel, 
ultrasonic couplant was applied between the piezoshaker element and the panel 
surface.  

A chirp excitation was generated using a Tektronix AFG3022C function 
generator at 3 ± 2V (unipolar) to provide the necessary frequency content for 
resonance. This signal was amplified to 120 ± 80V using an isi-sys HPDA-0-180-1C 
high-power amplifier and sent to the piezoshaker for excitation (Figure 3). A chirp 
excitation from 10 to 20 kHz over a 3-s period of three seconds was chosen because 
multiple resonance frequencies were expected to fall within this range for many 
damage scenarios, supported by laser Doppler vibrometery (LDV) data and finite 
element analysis (FEA) simulations. A long period of excitation period provided time 
for energy to accumulate within the damage region and for significant resonance to 
occur during the sweep when the appropriate frequencies were being excited. The 
experimental setup is shown in Figure 3. 

Photron FASTCAM Mini AX-200 high-speed cameras were used for recording 
the surface dynamics. The cameras have a maximum resolution of 1024 pixels ́  1024 

 
 (a) (b) 
 
Figure 3. Experimental setup for (a) the stereo-camera system for damage imaging through 3D DIC 
and (b) the single-camera system for damage imaging through off-axis 2D DIC and decorrelation. 

 
 



 

 
 

pixels at 6400 frames per second (fps) with a 12-bit depth. The cameras were 
equipped with Nikon AF-S VR Micro-Nikkor 105mm f/2.8G IF-ED lenses. Three 
Zaila Daylight light-emitting diode (LED) fixtures were used to provide adequate 
lighting to accommodate the (1/60000) s shutter time required to minimize blur. The 
camera(s) and the LED fixtures were mounted to a rigid frame to minimize external 
vibrations.  

For a 1-megapixel resolution, the out-of-plane displacement resolution is 
approximately 0.00001 of the FOV, though this value is heavily dependent on system 
setup [15]. When resonance is present, the out-of-plane vibration magnitude is less 
than 10 microns. From this, a FOV of 100 mm ´ 100 mm was chosen to maximize 
the area that can be inspected while maintaining the system’s sensitivity to damage. 

3D DIC 

3D DIC was first explored for BVID inspection in a 2023 paper by the authors to 
demonstrate the potential of a white-light optical technique for visualizing subsurface 
BVID through capturing standing waves [8]. 3D DIC was used first since it offers 
the best sensitivity, as it can fully capture both in-plane and transverse displacement 
components. This allows it to capture the transverse wave modes (mainly the A0 wave 
mode), which are approximately three-times the magnitude of in-plane modes. 

In this previous work, 3D DIC was performed after calibration with the stereo-
camera setup shown in Figure 3a [11]. Each camera was oriented such that the optical 
axis of each camera was approximately 8° from the normal and the commercial 
application, VIC-3D by Correlated Solution, Inc., was used for calibration and 3D 
DIC. This effectively converted the pixel intensities from stereo-camera videos 
(IM(x,y,t); M=left, right) to a 3D surface displacement video (u(x,y,t), v(x,y,t), 
w(x,y,t)). A DIC subset size of 21 ´ 21 pixels was used with a step size of 7 pixels. 
Before processing, a high-pass filter with a cutoff frequency of 0.2 kHz was applied 
to the displacement data to remove ambient noise. While this also may remove some 
temporally aliased signals near intervals of the sampling rate (6.4 kHz), there should 
be sufficient opportunities for resonance at other frequencies to still provide a quality 
damage image since there are many resonance modes. 

In MATLAB, the TWE imaging condition was applied, converting the 3D surface 
displacement video (u(x,y,t), v(x,y,t), w(x,y,t)) extracted using 3D DIC to a physical 
domain, I(x, y), representing the subsurface damage image within the FOV. This 
TWE condition is based on the monogenic signal, which is obtained via a Reisz 
transform and used to compute the instantaneous amplitude. The local wave energy 
is then calculated spatially over time from the instantaneous amplitude. Additional 
information about this TWE imaging condition can be found in [11]. For 3D DIC, 
the damage images are the norm of the TWE of each 3D directional velocity 
component: 
 

 𝐼!"	"$%(𝑥, 𝑦) ≡ (|TWE&(𝑥, 𝑦)|' + .TWE((𝑥, 𝑦).
' + |TWE)(𝑥, 𝑦)|' (1) 

 
For the formulation of the TWE in both DIC cases, the signal is considered the 
product of the displacement directional component and angular frequency during the 



 

 
 

frequency sweep to represent the velocity. While the actual velocity could not be 
derived due to aliasing, this simplified representation of velocity serves the purpose 
of accounting for frequency since the displacement amplitude is frequency 
dependent.  

The damage imaging results produced from the displacement data extracted using 
3D DIC are presented in Figure 4. In both Panel A images, the damage image has 
more contrast than in the Panel B images. In the Panel B images, artifacts around the 
left and right edges are present, which are likely caused by a combination of non-
uniform lighting and poorer focus from the limited depth of field in these regions. 
However, the TWE at the damage in Panel B is approximately one order smaller than 
that of Panel A, so these artifacts are present in Panel A images but not visible due to 
the scaling. Though each panel was subjected to an impact with the same energy (2-
Joules), the subsurface damage was created differently and has different resonance 
frequencies. Thus, fewer resonance events could have occurred during the 10-20 kHz 
sweep for Panel B and therefore did not contribute as much to the TWE. It is also 
possible that significant resonance could have been observed below 0.2 kHz due to 
aliasing and was attenuated by the high pass filter. Despite the discrepancies in the 
damage images, the damage in all cases has relatively high contrast and clearly 
matches the expected damage locations described in Figure 1. 

OFF-AXIS 2D DIC  

After the 3D DIC technique demonstrated an ability to image BVID in a 
composite panel using a single 3-second video, off-axis 2D was explored as the next 

 
 

Figure 4. Total wave energy damage images computed using 3D DIC, off-axis 2D DIC, and 
decorrelation for the two panels and setups described in Figure 1.  

 
 



 

 
 

step in the optimization process to demonstrate the ability of a single camera to 
capture the local resonance with the sensitivity needed to image BVID. For this, the 
second camera was removed from the system and calibration was not necessary. The 
optical axis of the remaining camera was oriented approximately 22° around the y-
axis of the panel with respect to the surface normal, integrated with the experimental 
setup in Figure 3b. With this orientation, the x-displacement perceived by the camera 
and calculated via 2D DIC does not accurately represent the in-plane x-displacement 
of the panel; rather, the x-displacement computed via 2D DIC will be the norm of 
cos(𝜃) of the in-plane x-displacement and sin(𝜃) of the out-of-plane displacement. 
For an angle of 𝜃 = 22°, 92.7% of the in-plane x-displacement will be observed and 
37.5% of the out-of-plane z-displacement will be observed. Figure 5a demonstrates 
the orientation of the camera and the Figure 5b shows the influence of each physical 
displacement component from the surface on the displacement observed by the 
camera. In this case, off-axis 2D DIC effectively converted the pixel intensities of the 
video from the single camera, I(x,y,t), to a 2D surface displacement video (u(x,y,t), 
v(x,y,t)). Like with 3D DIC, a subset size of 21 ´ 21 pixels was selected with a step 
size of 7 pixels. Since there is no need for computationally intensive subset matching 
between image pairs like required by 3D DIC, the processing time was reduced by a 
factor of approximately three. 

For 2D DIC, the damage images are the norm of the TWE of each x- and y- 
directional velocity component: 

 𝐼'"	"$%(𝑥, 𝑦) ≡ (|TWE&(𝑥, 𝑦)|' + .TWE((𝑥, 𝑦).
' (2) 

 
 (a) (b) 
 
Figure 5. (a) Off-axis single-camera experimental setup where the optical axis is oriented 𝜃 degrees 

around the y-axis with respect to the surface normal and (b) the contribution of surface 
displacements to the movement observed by the camera. From the image plane (perspective of the 
camera), the observed movements in the y-direction match the displacements in the physical plane 

(on the surface), but the observed movements in the x-direction are a combination of x- and z-
direction movements of the physical plane. 

 
 



 

 
 

where the product of the displacement and angular frequency during the sweep was 
once again used as the signal in the formation of the TWE. 

The damage imaging results produced from the displacement data extracted using 
off-axis 2D DIC are presented in Figure 4. These results closely mirror the 3D DIC 
results. Though there is slightly less contrast in the damaged region, this is expected 
since only a portion of the transverse displacement was captured. Overall, these 
images verify that off-axis imaging can be used to produce clear damage images of 
BVID with only one camera. 

IMAGE DECORRELATION 

Following the verification of the off-axis imaging method for capturing BVID, 
image decorrelation was explored as a replacement for DIC to reduce data processing 
time. The decorrelation value describes the pixel intensity change from surface 
movement and is scalar. While the sensitivity of decorrelation at each pixel will 
depend heavily on the speckle pattern content within, the apparent surface movement 
is influenced by cos(𝜃) of the x-displacement, all the y-displacement, and sin(𝜃) of 
the z-displacement, equivalent to the norm of the vectors described in Figure 5b. 

After images were captured and saved in TIFF format, they were imported 
directly into MATLAB for off-axis video frame decorrelation. To make it possible to 
import the images into MATLAB for processing and to make the data size more 
manageable, images were all spatially downsampled by averaging groups of four 
pixels together. Images were also divided into two groups (even and odd) and 
processed separately to further reduce the import size. Images from each group were 
averaged together to produce the final damage image. This reduced the number of 
images that needed to be imported at one time to 9600 and lowered the effective 
frame rate to 3.2 kHz.  

To extract the magnitude of surface change across each frame, the normalized 
cross-correlation (NCC) was selected as the decorrelation algorithm since it is 
invariant to global changes in intensity, like lighting changes between two images, 
and the normalization step generally makes it more robust [16]. For localization 
across the image, the decorrelation was calculated using a sliding window of size 
𝑁 × 𝑁. The following formulation for the local NCC using this sliding window is: 
 

 𝑁𝐶𝐶*+(𝑑, 𝑟) =
∑ ∑ -.(&,()23!,($%)4-5(&,()23',($%)4%()*+

,-%
$()*+
.-$

6∑ ∑ -.(&,()23!,($%)4
/%()*+

,-%
$()*+
.-$ 6∑ ∑ -5(&,()23',($%)4

/%()*+
,-%

$()*+
.-$

 (3) 

 
where	𝑁 is the length of the square window, (𝑢, 𝑣) are the coordinates of the window 
origin, 𝑑(𝑥, 𝑦) is the displaced image, 𝑟(𝑥, 𝑦) = 7

8/
∑ 𝐷(𝑥, 𝑦, 𝑓)9
:;7  is the reference 

image equal to the temporal mean over all frames for each pixel, 𝜇.,(*+) is the spatial 
mean of the window in the displaced image, and 𝜇5,(*+) is the spatial mean of the 
window of the reference image. As applied in this work, decorrelation effectively 
converted the pixel intensities of the video from the single camera, I(x,y,t), to an array 
of scalar decorrelation values, NCC(x,y,t). For this study, a window size of 𝑁 = 11 
and a step size of 4 pixels were chosen for NCC to provide a balance for the best 
damage visibility. After accounting for downsizing, this corresponds to the subset 



 

 
 

size of 21 and step size of 7 used for DIC. An optical axis angle of 𝜃 = 22° relative 
to the surface normal was selected as a balance between capturing the resonance with 
adequate intensity and reducing fringe pattern artifacts created by pixels either 
sampling the edges of speckles (high sensitivity to movement) or nearly solid white 
or black regions (low sensitivity). This direct, pixel-by-pixel, method of extracting 
surface dynamics does not require any subset matching, reducing the total processing 
time by approximately 5 times compared to 2D DIC and 15 times compared to 3D 
DIC. 

For image decorrelation, the damage images are equivalent to the TWE of the 
decorrelation map: 
 
 𝐼.<=>55(𝑥, 𝑦) ≡ TWE8%%(𝑥, 𝑦) (4) 
 
where the product of the decorrelation value and angular frequency during the sweep 
was used in this case as the signal in the formation of the TWE. A 0.2 kHz high pass 
filter was applied directly to the video before computing the TWE. 

The damage images produced from the displacement data extracted using NCC 
image decorrelation are presented in Figure 4. All damage images of Panel A are very 
similar to those produced using DIC. Like with DIC, the discrepancy in the clarity of 
images from Panel A and B is likely due to less energy being captured damage region 
in Panel B, reducing the scale (note the maximum scale value) to make artifacts and 
noise more apparent. While the artifacts in the Panel B images produced with DIC 
were around the corners and likely caused by increased subset matching uncertainty 
in regions of poorer focus and lighting conditions due to the oblique optical axis, the 
artifacts in the images produced with image decorrelation are within the center and 
likely due to the fringe patterns described earlier. Despite these artifacts, the damage 
region clearly stands out from the rest of the FOV, and the signal-to-noise ratio is 
comparable to those in the images from 2D DIC and 3D DIC. 
 
 
CONCLUSIONS 
 

In this work, an efficient and reliable computer vision-based system for 
inspection (NDI) or monitoring (SHM) was developed to visualize hidden impact 
damage in composite structures. Specifically, the technique for extracting surface 
dynamics from images was optimized by employing a single camera to image BVID 
in composites and using an efficient image decorrelation algorithm for extraction to 
skip the computationally intensive subset matching required by DIC. Overall, the 
damage images formed by the TWE imaging condition based on the decorrelation 
values provide baseline-free damage identification since the reference state is 
determined by the temporal mean of all frames. Thus, the proposed computer-vision-
based method is robust, efficient, and has a high potential for in-time inspection of 
critical composite structures with additional development. Since the image 
decorrelation technique relies on the grayscale intensity changes, the sensitivity of 
the decorrelation algorithm could be further improved by using a camera with a 
higher bit depth, and the SNR could be improved by acquiring more images during 
the sweep by using a camera with a higher frame rate and memory. While the time 
required for processing has been significantly reduced compared to previous efforts, 



 

 
 

the practicality of the work is still limited by the need to apply an artificial speckle 
pattern to the surface. Future work will focus on using a projected speckle pattern, 
rather than an applied speckle pattern, with the decorrelation technique to avoid the 
need for surface preparation. 
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