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ABSTRACT 
 

Accurate and reliable nondestructive evaluation (NDE) for stress measurement is 
essential for assessing structural performance and preventive maintenance. Local 
resonances offer an efficient NDE method due to their "amplified and localized" 
vibration amplitude. This allows for mounting or wiring near the structural edge without 
affecting the vibration modes. In this paper, we investigate the influence of stress level 
on the local resonances in a rectangular aluminum bar structure. In the first step, we 
utilize the electromechanical impedance method (EMI) to extract local resonances and 
verified them as Zero-Group-Velocity (ZGV) mode and cutoff frequency modes by 
performing two-dimensional fast Fourier transform (2D-FFT) on the wavefield. 
Furthermore, we investigate the influence of uniaxial tensile stress on the local 
resonance frequencies. It is observed that both the ZGV mode and cutoff frequency 
mode demonstrate a measurable sensitivity to the applied axial load. 
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INTRODUCTION 
 
Local resonances phenomena have gained the interest of researchers due to their 

energy-trapping and dominant resonance in amplitude spectra [1]. Various studies have 
been conducted to observe local resonances in waveguide structures such as plate [2], 
[3], bar [4], [5], cylinder [6], and rail [7]. The results have shown that the resonance is 
related to the zero group velocity (ZGV) point or cutoff frequency point [5]. At these 
points, group velocity decrease to zero, resulting in a vanished wave energy velocity, 
thereby wave energy cannot propagate away. The ZGV mode and cutoff frequency 
mode exhibit different wavelength phenomenon, with a non-zero wavenumber at ZGV 
mode and a zero wavenumber at cutoff frequency mode [8]. These modes offer an 
efficient tool for nondestructive evaluation (NDE) applications, such as defect detection 
[9], material properties estimation [1], and thickness evaluation [10], [11]. 

However, stress measurement based on the local resonances has not been explored. 
Most of studies have relied on propagating guided waves and their time-of-flight 
calculation for stress measurement [12]–[14], which has encountered challenges in 
accurately measuring wave speed due to inadequate variation. In this study, we 
experimentally investigate the influence of uniaxial stress level on the local resonances 
in terms of local resonance frequencies shift measured by electromechanical impedance 
method (EMI). In the following sections, we first identified ZGV and cutoff modes 
frequencies from dispersion curves of a rectangular aluminum bar using eigenanalysis 
study in COMSOL software. We then adopted EMI method for both excitation and 
measurement, dominant resonance frequencies were observed from EMI conductance 
spectra. Furthermore, we performed two-dimensional fast Fourier Transform (2D-FFT) 
analysis to identify these resonances as ZGV and cutoff frequencies modes in the 
wavenumber-frequency spectra. Additionally, the wave profile measured by laser 
vibrometer demonstrates the energy-trapping phenomenon at both ZGV mode and 
cutoff frequencies mode, allowing for mounting at the far field structural edges for a 
tensile loading test without affecting modes. In the last section, we conducted the 
uniaxial tensile loading test to study the effect of stress level on the local resonance 
frequencies. The results demonstrates that local resonance frequency variation caused 
by changes in stress level can be accurately measured by EMI. 
 
 
LOCAL RESONANCE GENERATION AND 2D-FFT ANALYSIS 
 

The studied structure is a rectangular aluminum bar with 25.4 mm width, 6.35 mm 
thickness, and 1 m length. First, we calculated the dispersion curves over the rectangular 
cross-section by eigenfrequencies analysis of a unit cell in COMSOL Multiphysics . 
The Bloch-Floquet periodic boundary condition with a predefined wavenumber (k) was 
assigned to the wave propagation direction of the unit cell as indicated in Figure 1(a). A 
quarter of the unit cell was simulated with symmetric or antisymmetric boundary 
conditions to identify four mode families: Longitudinal (L), Flexural Vertical (FV), 
Flexural Horizontal (FH), and Torsional (T) modes. The nominal material properties of 
6063 aluminum alloy were adopted: Young’s modulus E = 69 GPa, Poisson’s ratio v = 
0.33, and density 2700 kg/m3. The unit cell was meshed using cubic elements with a 
mesh size of 1 mm. The wavenumber k was swept from 0 to 30 1/m. Figure 1(b) shows 
the calculated dispersion curves from 0 to 200 kHz.  



 
 

Figure 1. (a) A meshed unit cell indicating the boundary conditions, and (b) dispersion 
curves. 

 
 

By the principle of EMI, a piezoelectric patch was attached to the middle of the top 
surface of the aluminum bar, providing broadband excitation ranging from 10 to 200 
kHz, then the structural resonance frequencies can be identified from the PZT generated 
electric conductance spectra [15]. Additionally, these resonance modes were further 
identified through 2D-FFT analysis and visualized using recorded velocity along the 
wave propagation direction. The detailed simulation and experimental setup were 
discussed in our previous work, and the results for both agree well with each other [6]. 
Here, we presented the experimental conductance spectra and frequency-wavenumber 
(f-k) spectra as shown in Figure 2. The conductance spectra illustrate four resonances at 
frequencies of 46.2 kHz, 100.7 kHz, 105.3 kHz, and 161.6 kHz in Figure 2(a). Figure 
2(b) shows the f-k spectra overlapped with calculated dispersion curves (red dashed 
lines). The highlight excited branches in f-k spectra align well with the dispersion 
curves, therefore, identify the four resonances in conductance spectra as FV1-cutoff at 
45.51 kHz, L1-ZGV at 99.68 kHz, L1-cutoff at 105.2 kHz, and FV2-cutoff at 160.12 
kHz, respectively. The slight frequency difference between conductance spectra and f-
k spectra were also observed in [16], [17].  

 
      To further investigate wave propagation pattern at local resonance frequencies, a 
velocity scan using 3D laser vibrometer was performed along the wave propagation 
direction on surface opposite the attached PZT. Figure 3 is the experiment setup. The 
scan started 10 mm away from the PZT center. To improve the surface optical condition, 
3M 7610 retroreflective tape was mounted on the surface of the aluminum bar [18]. 
Modeling clay was put around bar edges to eliminate boundary reflection interference. 
By Fourier transforming the time signal to frequency spectra, velocity map around FV1-
cutoff and L1-ZGV frequencies were obtained.  

 



 
 

Figure 2. Experimental results: (a) conductance spectra (b) dispersion relations in k-f 
domain. 

 
 

 
 

Figure 3. Experimental setup for wave profile measurement. 

 
 

Figure 4. Experimental velocity map (a) FV1-cutoff mode, (b) L1-ZGV mode. 
 



Figure 4 shows the experimental wave profiles around FV1-cutoff and L1-ZGV 
frequencies. The energy-trapping feature is observed close to the source location at the 
minimum cutoff and ZGV frequencies, respectively. For L1-ZGV mode, it is also 
observed that a standing wave pattern with the wavelength approximate 10 cm due to 
the interference of two propagating waves in opposite directions as shown Figure 3(b). 

 
 

INFLUENCE OF UNIAXIAL STRESS ON LOCAL RESONANCES  
 
Our previous studies have demonstrated that the local resonances are immune to far 

field boundary conditions. This finding allows for mounting or wiring near the structural 
edge without affecting the vibration modes, and offers the possibility of quantitatively 
evaluating the stress level by measuring the resonance frequency shift directly in the 
EMI spectra. In this section, we investigate the influence of uniaxial stress level on local 
resonance frequencies. Figure 4 shows the experimental setup, which employs an EMI 
measurement system and an Instron 5659 Testing System. A strain gauge was also 
attached to the aluminum bar and connected to a strain indicator (Vishay P-3500) to 
control the tensile load level. The tensile strain was linearly increased from 0 to 1500 
macrostrain in 16 steps, corresponding to a maximum tensile stress of 103.5 MPa. For 
each loading step, an EMI test was conducted to collect resonant frequencies. 

 
 

 
 

Figure 5. Uniaxial tension loading test setup. 

 
 

Figure 6. Variation in the four local resonances under the uniaxial tensile stress (a) 
FV1-cutoff, (b) L1-ZGV, (c) L1-cutoff, and (d) FV2-cutoff modes. 



As shown in Figure 6, the resonance frequency of the FV1-cutoff, L1-ZGV, L1-
cutoff, and FV2-cutoff modes increases with increasing tensile stress. Moreover, it can 
be observed that the resonance amplitude in the conductance spectra decreases as the 
tensile stress level increases. This is because the tensile load causes a reduction in 
stiffness, resulting in smaller conductance [13]. Sensitivity (Hz/MPa) was defined as 
the frequency shift verse stress for quantitively analysis. Calculated sensitivity based on 
experimental results is 0.64 Hz/MPa for FV1-cutoff, 0.41 Hz/MPa for L1-ZGV, 0.93 
Hz/MPa for L1-cutoff, and 2.57 Hz/MPa for FV2-cutoff. The most sensitive mode to 
stress is FV2-cutoff, while the least sensitive one is the L1-ZGV mode.   

 
 

CONCLUSTION 
 

In summary, we investigated the unique features of local resonance, such as energy-
trapping and minimum frequency behavior, and studied the effect of uniaxial stress on 
the local resonance frequencies. Our experimental results indicate that FV2-cutoff is the 
most sensitive mode to tensile stress, with a sensitivity of 2.57 Hz per MPa, while L1-
ZGV was the least sensitive, with a sensitivity of 0.41 Hz per MPa. These variations 
could be accurately measured by EMI. 
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