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ABSTRACT 
 

This work proposes an optimal fiber optic sensor placement framework for 
structural health monitoring (SHM) applications. The framework is applied to an 
aircraft’s wing spar entirely made of composite materials. The damage of interest is 
debonding between laminates, which may cause local buckling that results in reduced 
structural load carrying capabilities. A high-fidelity finite element (FE) model is used 
as a synthetic data generator. The inputs to the model are loads and debonding damage 
parameters (size and location), and the outputs are uniaxial strain measurements and 
buckling eigenvalues. “Run time” surrogate models are created using different machine 
learning methods to overcome the high computational costs of each run of the physics- 
based model. Then, Bayesian inference is used to estimate the damage parameters given 
strain measured at candidate sensor locations. These estimations are used to assess 
damage criticality, which is linked to buckling eigenvalues, and transformed into 
decisions. Bayesian optimization is used to select the candidates that minimize a utility 
function that considers the costs associated with making a certain decision plus the costs 
of acquiring and installing the SHM hardware (sensors, data acquisition system, etc.). 
The candidate with the lowest cost is selected. The resulting optimal sensor 
configuration is presented, consisting of the number of sensors to be deployed and their 
respective locations. The importance of defining an objective function that reflects the 
goal of the SHM system (e.g., maximizing the probability of detection, minimizing the 
probability of false alarms, or a balance of both) are also discussed. 
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INTRODUCTION 

 

One of the primary purposes of implementing a structural health monitoring 

(SHM) system is to enable real-time monitoring of a structure, allowing for continuous 

assessment of its condition. This assessment helps in making informed decisions 

regarding the present and future capability of the system to operate safely and reliably 

[1]. However, the success of an SHM system is directly related to the quality of the data 

being collected and the features extracted from them [2]. Optimal sensor placement 

(OSP) strategies work to maximize the ability to collect and discriminate relevant data 

features given all imposed constraints [3, 4]. 

In aerospace applications—where weight is a critical factor—the number of 

sensors, data acquisition systems and power supplies available is limited. Structural 

inaccessibility and the costs of acquiring, installing, and maintaining the hardware must 

also be considered [5]. This paper presents an OSP framework that considers these 

constraints and minimizes the costs associated with the system and its decisions, where 

false positives and false negatives are penalized. 

This work considers arrays of fiber Bragg gratings (FBGs) used as the sensing 

mechanism. These sensors are lightweight and compact, can be embedded within 

composite materials [6], are immune to electromagnetic interference, and have high 

resolution and sensitivity to strain measurements, making them suitable for aerospace 

applications. The steps of the framework and results will be discussed in the following 

sessions. 

 

 

THE OPTIMAL SENSOR PLACEMENT FRAMEWORK 
 

Step 1 – Defining the Structure and Damage of Interest 

 

The structure of interest is a wing spar. The spar is the main structural component 

of an aircraft wing, and it extends from the wing root to the wingtip. In this work, the 

spar is 5m long, shaped as an I-beam entirely made of carbon fiber reinforced polymer 

composites, with a sandwich panel web. Images of the finite element (FE) model of the 

structure are shown in Figure 1, and more details about the model can be found in [7]. 

The damage of interest is debonding between the top cap and the web, which may 

be caused by manufacturing imperfections or introduced during service. When the top 

cap is under compression, this debonding damage may cause local buckling, preventing 

the aircraft from carrying its ultimate service load. If this occurs, the damage is 

considered critical to the structure. This behavior was simulated in a finite element 

analysis, and it is governed by the buckling eigenvalue, 𝜆. Given that 

 
𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝜆 × 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (1) 

 

where 𝐹 are the loads, any damage condition that makes 𝜆 < 1 for the applied loads are 

considered critical. This is the fundamental damage limit state. 

The debonding damage was fully characterized by a set of parameters 𝜃 = {𝜎, 𝑥}. 

These two random variables are the damage size, 𝜎,  and location along the beam, 𝑥. 

Thus, the damage was probabilistically characterized by the joint probability density 

function 𝑝(𝜎, 𝑥). 



 
 

Figure 1. Left: cross-section view and FE model’s mesh of the spar. Right: representation of debonding 

damage by removal of tie constraints, shown in purple (top flange removed from the image) [7]. 

 

 

Although stress concentrations from the loading profile might induce some 

correlation between damage size and location, it is reasonable to assume that they are 

independent parameters. Then, the joint density of the damage parameters was factored 

as 𝑝(𝜎, 𝑥) = 𝑝(𝜎)𝑝(𝑥). These were the prior distributions of the damage parameters. 

 

Step 2 – Data acquisition and/or synthetic data generation 

 

The second step of the framework is acquiring data from the structure, under 

different environmental, operational, and damage conditions. In many cases, these data 

can be almost impossible to acquire, especially if damage is irreversible. In this work, 

the lack of directly available field data was mitigated using a detailed finite element 

model [7], as shown in Figure 1. A forward model can be written as in Equation (2) 

 

𝜀 = ℎ(𝐹, 𝜎, 𝑥) + 𝑤 (2) 

 

where 𝜀 is the output strain (at any location), and ℎ(∗) is the finite element model with 

probabilistic inputs of load state 𝐹 and damage state characterized by 𝜎 and 𝑥. Gaussian 

white noise, 𝑤, with 𝜇𝑤 = 0 𝑎𝑛𝑑 𝜎2 = 𝑠𝑤 can be added to the strain obtained from the 

finite element model, modeling the uncertainty measured in the strain data. 

Since ℎ(∗) is quite complex, forward simulation to map inputs to measurements can 

be achieved by running the finite element model sampling across all the probabilistic 

variables, 𝐹, 𝜎, 𝑥, and adding noise, 𝑤. However, because criticality (failure) is not 

determined by the presence of the debonding damage, but rather by their effect on local 

buckling, two runs per probabilistic input are necessary: one normal application of 

Equation (2) to obtain strain, followed by a buckling analysis to get the buckling 

eigenvalue, 𝜆. Therefore, the buckling step can be written as 

 

𝜆 = 𝑏(ℎ(𝐹, 𝜎, 𝑥) (3) 

 
where 𝑏(∗) is the buckling analysis operator applied to the finite element model, ℎ.  



 
 

Figure 2. Data generation step using a high-resolution physics-based finite element model [7] and 

forward surrogate models [8]. 

 

 

From appropriate input space sampling, the distribution of 𝜀 can be obtained while 

finding the corresponding buckling eigenvalue for the same input conditions. However, 

in practice, strain is measured with discrete FBG sensors to infer whether local buckling 

has occurred or not. Therefore, it is necessary to obtain the probability that buckling 

𝑝(𝜆) has occurred, given strain measurements. Doing so requires thousands of 

executions of the two-step finite element model, which is very time consuming. 

To overcome this challenge and to achieve enough Monte Carlo simulations with 

reasonable computational cost/time, two surrogate models were built in the forward 

direction [8]: a Gaussian process regressor (GPR) to predict eigenvalues, and an 

artificial neural network (ANN) to reconstruct strain measurements. 

To create the surrogate models, the finite element model had to be executed enough 

times to create training, testing, and validation sets. Assumed prior probabilities of 

damage size, varying from 0.01m to 0.150 m, and damage location, from 0 to 5 m, were 

used to create a comprehensive database of nearly 1,000 different damage scenarios, 

using Latin Hypercube sampling as a space-filling technique. Manually executing such 

a large computational campaign would be impossible, therefore a Python script was 

created and integrated to ABAQUS to change the damage parameters and make all 

necessary model adjustments (constraints, meshes, etc.) between each run, execute the 

analysis, and save the results [7]. A summary of this process is shown in Figure 2. 

 

Step 3 – Develop the damage diagnosis model 

 

Consider strain measurements 𝒚 acquired from the fiber optics sensors on the real 

structure, placed at a certain design 𝒅, while 𝑮 are strain measurements generated via 

surrogate model or FE model. From the forward model in Equation (2), by considering 

the loads, 𝐹, fixed as the maximum service load, 𝑮(𝒅, 𝜽) can be written as 

 

𝑮(𝒅, 𝜽) = 𝑳(𝒅)ℎ(𝜽) (4) 

 

where 𝑳 is the configuration vector, linking the measurements 𝒚 to the model’s strain 

response ℎ. It is a Boolean vector, with either 1 or 0 values, corresponding to the 

measured and non-measured strain components. In other words, it is a selection operator 

of the measured strain, out of the complete vector ℎ extracted from the FE model. In 
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addition, 𝑳 depends on the spatial position of the sensors, hence 𝑳 = 𝑳(𝒅) is a function 

of the design variable 𝒅. Because the model’s response ℎ depends on the parameters 𝜽, 
the measured strain can be generalized as: 

 

𝒚 = 𝑮(𝒅, 𝜽) + 𝒘 (5) 

 

Within the Bayesian inference theory, the probability distribution function of the 

damage parameters 𝜽 is updated as the data are measured. According to the Bayes 

theorem [9]:  

 

𝑝(𝜽|𝒚, 𝒅) =
𝑝(𝒚|𝜽, 𝒅)𝑝(𝜽|𝒅)

𝑝(𝒚|𝒅)
 (6) 

 

where 𝑝(𝜽|𝒚, 𝒅) is the posterior distribution,  𝑝(𝒚|𝜽, 𝒅) is the likelihood, 𝑝(𝜽|𝒅) is the 

prior distribution and 𝑝(𝒚|𝒅) is the evidence. Notice that the prior distribution of the 

damage parameters is independent of the design (sensor placement) [10], so 

 

𝑝(𝜽|𝒅) = 𝑝(𝜽) (7) 

 

According to [10], the likelihood function can be numerically estimated as 

 
𝑝(𝒚𝒊|𝜽𝒋, 𝒅) = 𝑝𝑤[𝒚𝒊 − 𝑮(𝒅, 𝜽𝒋)] (8) 

 

This estimation is given as follows: 

 

1. Generate 𝑁𝑜𝑢𝑡 (e.g., 2,000 cases) combinations of damage size and 

damage locations, 𝜽𝑖 = {𝝈, 𝒙}, following the prior distributions of each damage 

parameter. 

2. Generate 𝑁𝑖𝑛 (e.g.,5,000 cases) combinations of damage size and 

damage locations 𝜽𝑗 = {𝝈, 𝒙} via permutation, where 𝑁𝑜𝑢𝑡 ≠ 𝑁𝑖𝑛.  
3. Use the forward model (ANN) to generate the strain measurements for 

each damage size and damage location from 𝜽𝑖 and 𝜽𝑗: h(𝜽𝒊) and 𝒉(𝜽𝒋) . 

4. For any sensor array 𝒅 = {𝑑1, 𝑑2, … , 𝑑𝑘}, calculate 𝑮(𝒅, 𝜽𝒋). 

5. Finally, 𝑝(𝑤) is known, as discussed in Equation (2). 

 

Therefore, for any given strain measured with the FBG sensors, the likelihood 

𝑝(𝒚|𝜽, 𝒅) can be estimated, and the posterior estimate of the damage parameters is 

given by Equation (6). Then, the estimated damage parameters 𝜽̂, can be used as inputs 

to the GPR surrogate model to estimate the buckling eigenvalue. If 𝜆 < 1, the damage 

is considered critical to the structure, while 𝜆 > 1 means that the damage is not critical. 

 

Step 4 – Define the cost function 

 

Let 𝐶𝑖𝑗 be the cost of deciding that the structural state is 𝑀𝑖 when the true state is 

𝑀𝑗 . Notice that 𝐶𝑖𝑗 only penalizes incorrect decisions (false positives and false 

negatives). In aerospace applications, false negatives usually have a higher cost 

associated with them. However, a high probability of false positives causes unnecessary 



grounding of the aircraft, and the costs of unscheduled downtime can also be high. The 

user must define 𝐶𝑖𝑗 values that define the goal for their SHM system. The cost of 

decision is defined as:  

𝐶𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ 𝐶𝑖𝑗

1

𝑖,𝑗=0

𝑃(𝐷𝑖|𝑀𝑗)𝑃(𝑀𝑗) (9) 

 

The design cost, 𝐶𝑆𝐻𝑀, is defined as:  

 
𝐶𝑆𝐻𝑀 = 𝐶𝑠𝑒𝑛𝑠𝑜𝑟𝑠 + 𝐶𝐷𝐴𝑄 + 𝐶𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 (10) 

 

The total cost, or Bayes risk, is given by: 

 

𝐶̂(𝒅) = (𝐶𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐶𝑆𝐻𝑀)/𝑁 (11) 

 

where N is a normalization factor. The Bayes risk 𝐶̂(𝒅) is computed as follows: 

1) Creation of a Boolean representation of the sensor placement along all possible 

locations: 𝐿(𝒅) ∈ {1,0}. 

2) The measured strain (𝒚) is emulated by adding Gaussian white noise 

𝒘~𝑁(𝟎, 𝜎2𝑰) to the strain 𝑮(𝒅, 𝜽𝑖) = 𝑳(𝒅)𝒉(𝜽𝑖). 

3) The likelihood 𝑃(𝒚𝑖|𝜽𝑗 , 𝒅) is numerically estimated using sequential Monte 

Carlo [10]. 

4) The likelihood is then used to estimate the maximum a posteriori probability of 

the damage state 𝜽𝑖 .  
5) The GPR surrogate is used to estimate the 𝑁𝑜𝑢𝑡 buckling eigenvalues, 𝜆, 

associated with each damage size and damage location in the 𝜽𝑖 vector. 

6) The buckling eigenvalues are used to estimate damage criticality (𝜆 <
1 𝑖𝑠 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙). 

7) As this is a supervised learning method, so the true damage state and its 

equivalent 𝜆 are known, and a confusion matrix can be generated. The 

performance (PFA and PoD) of the given sensor array can be estimated. 

8) The costs associated with the performance and the design are calculated. 

 

Step 5 – Perform Bayesian Optimization 

 

The final step of the framework is to perform the Bayesian optimization. Bayesian 

optimization is a technique used for optimizing functions that are expensive to evaluate. 

It employs a probabilistic model to balance exploration and exploitation of the search 

space, iteratively selecting the next best point to evaluate based on the posterior 

distribution, efficiently searching for the optimal solution. The algorithm stops 

searching when it reaches the maximum number of iterations or another specified 

criterion. 

To perform the optimization, the constraints must be defined (e.g., sensor resolution, 

boundaries, and distance between sensors). Then, using the damage diagnosis and cost 

function from the previous steps, perform n Bayesian optimizations for the 𝑘-th sensor 

in the sensor array 𝒅 = {𝑑1, 𝑑2, … , 𝑑𝑘} by minimizing the Bayes risk. 



  

 
Figure 3. Results from the Bayesian optimization. Left: 10 sensors. Right: 40 sensors. Notice that the 

axes do not have the same limits. 

 

 

RESULTS 

 

There are two ways in which the optimized sensor array 𝒅 can be obtained. The first 

one is sequentially, i.e., finding the sensor that offers the minimum cost and fixing it to 

the array, then optimizing for the second sensor considering that sensor #1 is already 

fixed, and so on, until the 𝑘-th sensor is fixed. The second method is named 

combinatory, where the algorithm optimizes for all 𝑘 sensors at once. 

Figure 3 shows a histogram in which the cost was evaluated for 1,000 different 

randomly selected sensor arrays. Then, the same damage cases were evaluated multiple 

times by evenly distributed sensor arrays. Finally, the damage cases were used to 

evaluate the cost obtained via optimization, both sequential (red) and combinatory 

(black). Figure 4 shows the ROC curves for the same set of sensors presented in Figure 

3. It is shown that the performance of both sequential and combinatory provide similar 

results for 10 sensors, with a PFA around 60% and similar costs. For 40 sensors, 

however, the combinatory optimization performs much better, with a 12% decrease in 

the PFA and lower average cost. This comes at a high computational expense. 

 

 

 
 

Figure 4. ROC curves for optimized sensors obtained sequentially and combinatory. The threshold is 

𝜆 = 1, which is the criticality limit. 



CONCLUSIONS 

 

This paper presented the steps of an optimal sensor placement framework general 

enough to accommodate different structures and damage diagnosis models, given that 

enough data can be acquired and/or generated. It was shown that the decision cost must 

reflect the goal of the SHM system. In this application, for instance, false negatives were 

more heavily penalized than false negatives. The optimization considered the fact that 

not all damage can be detected with a limited amount of sensors and provided the best 

sensor locations that minimized false negatives while considering imposed constraints. 

The need for computationally efficient surrogate models to replace the FE model 

became evident as thousands of samples were used to estimate the likelihood. The 

difference in performance between sequential and combinatory optimization was 

discussed – while the combinatory technique offered improved performance, it came at 

a cost of much higher computational expenses, as the Bayesian optimization must be 

executed for all 𝑘 sensors at once. Finally, the damage criticality threshold was kept 

fixed at 𝜆 = 1. However, not all damage that provide 𝜆 < 1 offer the same level of 

criticality, e.g., a case that yields 𝜆 = 0.5 is almost twice as critical than a case that 

yields 𝜆 = 0.98. Therefore, different levels of threshold can be added to represent 

different levels of criticality, which might improve the performance of the system. 
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