Open Access Open Access  Restricted Access Subscription Access

Micro Heterogeneous Deformation and Strain Localization Behavior in Austenitic Ferritic Duplex Stainless Steels

G. CHAI, R. LILLBACKA, R.L. PENG

Abstract


This paper provides a review on the recent work done on the micro heterogeneous deformation and strain localization behavior in austenitic ferritic duplex stainless steels studied using TEM, SEM and in-situ X-ray diffractometer and neutron diffractometer and the simulation using multi-scale material modelling. The results from both studies show that the difference in the elasto-plastic properties of the austenite and ferrite phases has caused different amounts of plastic deformations occurring in these two phases, and consequently different static and cyclic stress strain behaviours and substructures. From the simulations it is found that the coupling effect plays a key role in producing the changes in the cyclic stress-strain behaviour and also on the substructure evolution. TEM investigation also shows that the dislocation slipping behaviour and substructures strongly depend on the elasto-plastic properties of the individual phases and also on the coupling effect. The study indicates that the material damage and crack initiation in a two phase metal start mainly in the weakest phase if the deformation hardening is considered.

Keywords


Multi phase alloys, Fatigue, Dislocation, Multi-scale modelingText

Full Text:

PDF