Open Access Open Access  Restricted Access Subscription Access

A Machine Learning Approach for Impact Damage Quantification in Polymer Matrix Composites



Largely due to superior properties compared to traditional materials, the use of polymer matrix composites (PMC) has been expanding in several industries such as aerospace, transportation, defense, and marine. However, the anisotropy and nonhomogeneity of these structures contribute to the difficulty in evaluating structural integrity; damage sites can occur at multiple locations and length scales and are hard to track over time. This can lead to unpredictable and expensive failure of a safety-critical structure, thus creating a need for non-destructive evaluation (NDE) techniques which can detect and quantify small-scale damage sites and track their progression. Our research group has improved upon classical microwave techniques to address these needs; utilizing a custom device to move a sample within a resonant cavity and create a spatial map of relative permittivity. We capitalize on the inevitable presence of moisture within the polymer network to detect damage. The differing migration inclinations of absorbed water molecules in a pristine versus a damaged composite alters the respective concentrations of the two chemical states of moisture. The greater concentration of free water molecules residing in the damage sites exhibit highly different relative permittivity when compared to the higher ratio of polymer-bound water molecules in the undamaged areas. Currently, the technique has shown the ability to detect impact damage across a range of damage levels and gravimetric moisture contents but is not able to specifically quantify damage extent with regards to impact energy level. The applicability of machine learning (ML) to composite materials is substantial, with uses in areas like manufacturing and design, prediction of structural properties, and damage detection. Using traditional NDE techniques in conjunction with supervised or unsupervised ML has been shown to improve the accuracy, reliability, or efficiency of the existing methods. In this work, we explore the use of a combined unsupervised/supervised ML approach to determine a damage boundary and quantification of single-impact specimens. Dry composite specimens were damaged via drop tower to induce one central impact site of 0, 2, or 3 Joules. After moisture exposure,  Entrepreneur Dr, Raleigh, North Carolina 27695, U.S.A. 553 each specimen underwent dielectric mapping, and spatial permittivity maps were created at a variety of gravimetric moisture contents. An unsupervised K-means clustering algorithm was applied to the dielectric data to segment the levels of damage and define a damage boundary. Subsequently, supervised learning was used to quantify damage using features including but not limited to thickness, moisture content, permittivity values of each cluster, and average distance between points in each cluster. A regression model was trained on several samples with impact energy as the predicted variable. Evaluation was then performed based on prediction accuracy for samples in which the impact energies are not known to the model.


Full Text:



  • There are currently no refbacks.