

Rate-Dependent Compaction and Relaxation Response of Uncured Prepregs under High-Pressure Conditions
Abstract
10.12783/asc36/35950
References
K. Naresh, K. A. Khan, R. Umer, and W. J. Cantwell, “The use of X-ray computed tomography
for design and process modeling of aerospace composites: A review,†Mater. Des., vol. 190, p.
, 2020, doi: 10.1016/j.matdes.2020.108553.
K. Naresh, A. Salem, K. A. Khan, W. J. Cantwell, and R. Umer, “Thermo-Mechanical
Compaction-Creep and Void Analysis of Prepregs Using XCT-Aided Geometrical Models,â€
Appl. Compos. Mater., vol. 28, no. 3, pp. 659–684, 2021, doi: 10.1007/s10443-021-09877-z.
M. Mei et al., “Preforming characteristics in compaction process for fabric with binder under
elevated temperature,†Compos. Commun., vol. 23, no. November, p. 100545, 2021, doi:
1016/j.coco.2020.100545.
J. Renaud, N. Vernet, E. Ruiz, and L. L. Lebel, “Creep compaction behavior of 3D carbon
interlock fabrics with lubrication and temperature,†Compos. Part A Appl. Sci. Manuf., vol. 86,
pp. 87–96, 2016, doi: 10.1016/j.compositesa.2016.04.017.
G. Francucci, E. S. RodrÃguez, and A. Vázquez, “Experimental study of the compaction
response of jute fabrics in liquid composite molding processes,†J. Compos. Mater., vol. 46, no.
, pp. 155–167, 2012, doi: 10.1177/0021998311410484.
O. J. Nixon-Pearson, J. P. H. Belnoue, D. S. Ivanov, and S. R. Hallett, “The compaction
behaviour of un-cured prepregs,†ICCM Int. Conf. Compos. Mater., vol. 2015-July, no. June
, 2015.
R. Engelhardt, R. Irmanputra, K. Brath, N. Aufenanger, and K. Drechsler, “Thermoset Prepreg
Compaction during Automated Fiber Placement and Vacuum Debulking,†Procedia CIRP, vol.
, pp. 150–155, 2020, doi: 10.1016/j.procir.2019.09.025.
A. Muliana and K. A. Khan, “A time-integration algorithm for thermo-rheologically complex
polymers,†vol. 41, pp. 576–588, 2008, doi: 10.1016/j.commatsci.2007.05.021.
K. A. Khan and R. Umer, “Modeling the viscoelastic compaction response of 3D woven fabrics
for liquid composite molding processes,†J. Reinf. Plast. Compos., vol. 36, no. 18, pp. 1299–
, 2017, doi: 10.1177/0731684417707263.
P. A. Kelly, “A viscoelastic model for the compaction of fibrous materials,†J. Text. Inst., vol.
, no. 8, pp. 689–699, 2011, doi: 10.1080/00405000.2010.515103.
A. A. Somashekar, S. Bickerton, and D. Bhattacharyya, “Modelling the viscoelastic stress
relaxation of glass fibre reinforcements under constant compaction strain during composites
manufacturing,†Compos. Part A Appl. Sci. Manuf., vol. 43, no. 7, pp. 1044–1052, 2012, doi:
1016/j.compositesa.2012.02.004.
M. Mei, Y. He, K. Wei, S. Duan, M. Li, and X. Yang, “Modeling the temperature-dependent
viscoelastic behavior of glass fabric with binder in the compaction process,†Polym. Compos.,
vol. 42, no. 6, pp. 3038–3050, 2021, doi: 10.1002/pc.26037.
S. M. Ha, M. Wissler, R. Pelrine, S. Stanford, G. Kovacs, and Q. Pei, “Characterization of
electroelastomers based on interpenetrating polymer networks,†Electroact. Polym. Actuators
Devices 2007, vol. 6524, p. 652408, 2007, doi: 10.1117/12.715061.
M. Mehdikhani, L. Gorbatikh, I. Verpoest, and S. V. Lomov, “Voids in fiber-reinforced
polymer composites: A review on their formation, characteristics, and effects on mechanical
performance,†J. Compos. Mater., vol. 53, no. 12, pp. 1579–1669, 2019, doi:
1177/0021998318772152.
Refbacks
- There are currently no refbacks.