### Multiscale Modeling of the Effective Thermal Conductivity of 2D Woven Composites by Mechanics of Structure Genome and Neural Networks

#### Abstract

10.12783/asc36/35936

#### Full Text:

PDF#### References

Monnot, P., LÂ´evesque, J. and Lebel, L. 2017. â€œAutomated braiding of a complex aircraft

fuselage frame using a non-circular braiding model,â€ Compos Part A Appl Sci Manuf.,

:48-63.

Tao, F., Lyu, X., Liu, X., and Yu, W. 2021. â€œMultiscale analysis of multilayer printed

circuit board using mechanics of structure genome,â€ Mech Adv Mater Struct., 28(8):774-

Wang, Y., Liu, X., Zhu, C., Parsons, A., Liu, J., Huang, S., Ahmed, I., Rudd, C. and

Sharmin, N. 2019. â€œProduction and characterisation of novel phosphate glass fibre yarns,

textiles, and textile composites for biomedical applications,â€ J Mech Behav Biomed Mater.,

:47-55.

Visser, S., King, R., Thornton, J., Brock, J., and Mansour, N. 2019. â€œMicro-scale Artificial

Weave Generation Capabilities for Thermal Protection System Material Modeling,â€ 11th

Ablation Workshop.

Zhou, X., Ruan, X., Zhang, S., Xiong, W., and Ullah, Z. 2021. â€œDesign optimization for

thermal conductivity of plain-woven textile composites,â€ Compos Struct., 255:112830.

Struzziero, G., Teuwen, J. and Skordos, AA. 2019. â€œNumerical optimisation of thermoset

composites manufacturing processes: A review,â€ Compos Part A Appl Sci Manuf.,

:105499.

OÂ¨ zdemir, I., Brekelmans,WAM. and Geers,MGD. 2008. â€œComputational homogenization

for heat conduction in heterogeneous solids,â€ Int J Numer Methods Eng., 73(2):185-204.

Low, ZK., Blal, N., Naouar, N. and Baillis, D. 2020. â€œInfluence of boundary conditions on

computation of the effective thermal conductivity of foams,â€ Int J Numer Methods Eng.,

:119781.

Yang, Z., Sun, Y., Cui, J., Yang, Z. and Guan, T. 2018. â€œA three-scale homogenization

algorithm for coupled conduction-radiation problems in porous materials with multiple

configurations,â€ Int J Heat Mass Transf., 125:1196-1211.

Yu, W. 2016. â€œA unified theory for constitutive modeling of composites,â€ J Mech Mater

Struct., 11(4):379-411.

Yu,W. 2019. â€œSimplified formulation of mechanics of structure genome,â€ AIAA Journal.,

(10):4201-4209.

Liu, X., Rouf, K., Peng, B. and Yu, W. 2017. â€œTwo-step homogenization of textile composites

using mechanics of structure genome,â€ Compos Struct., 171:252-262.

Liu, X., Yu, W., Gasco, F., and Goodsell, J. 2019. â€œA unified approach for thermoelastic

constitutive modeling of composite structures,â€ Compos Part B Eng., 172:649-659.

Liu, X., Tang, T., Yu, W. and Pipes, RB. 2018. â€œMultiscale modeling of viscoelastic

behaviors of textile composites,â€ Int J Eng Sci., 130:175-186.

Berdichevsky, V. 2009. â€œVariational principles of continuum mechanics: I. Fundamentals,â€

Berlin: Springer Science & Business Media.

Pitchai, P. and Guruprasad, PJ. 2020. â€œDetermination of the influence of interfacial thermal

resistance in a three phase composite using variational asymptotic based homogenization

method,â€ Int J Heat Mass Transf., 155:119889.

Tang, T. and Yu, W. 2007. â€œA variational asymptotic micromechanics model for predicting

conductivities of composite materials,â€ J Mech Mater Struct., 2(9):1813-1830.

Yan, S., Zou, X., Ilkhani, M., and Jones, A. 2020. â€œAn efficient multiscale surrogate

modelling framework for composite materials considering progressive damage based on

artificial neural networks,â€ Compos Part B Eng., 194:108014.

Liu, X., Gasco, F., Goodsell, J. and Yu, W. 2019. â€œInitial failure strength prediction

of woven composites using a new yarn failure criterion constructed by deep learning,â€

Compos Struct., 230:111505.

Hashin, Z. 1968. â€œAssessment of the self consistent scheme approximation: conductivity

of particulate composites,â€ J Compos Mater., 2(3):284-300.

Peng, B. and Yu,W. 2018. â€œA micromechanics theory for homogenization and dehomogenization

of aperiodic heterogeneous materials,â€ Compos Struct., 199:53-62.

Geuzaine, C. and Remacle, J. 2009. â€œGmsh: A 3-D finite element mesh generator with

built-in pre-and post-processing facilities,â€ Int J Numer Methods Eng., 79(11):1309-1331.

Lin, H., Brown, LP. and Long, A. 2011. â€œModelling and simulating textile structures

using TexGen,â€ Compos Struct., 331:44-47.

Seo, Y., Luo, K., Ha, M. and Park, Y. 2020. â€œDirect numerical simulation and artificial

neural network modeling of heat transfer characteristics on natural convection with a

sinusoidal cylinder in a long rectangular enclosure,â€ Int J Heat Mass Transf., 152:119564.

Liu, X., Tao, F. and Yu, W. 2020. â€œA neural network enhanced system for learning nonlinear

constitutive law and failure initiation criterion of composites using indirectly measurable

data,â€ Compos Struct., 252:112658.

Liu, X., Tao, F., Du, H., Yu, W. and Xu, K. 2020. â€œLearning nonlinear constitutive

laws using neural network models based on indirectly measurable data,â€ J Appl Mech.,

(8):081003.

Nielsen, MA. 2015. â€œNeural networks and deep learning,â€ Determination press San Francisco,

CA, USA.

Hamillage, M., Kwok, K. and Fernandez, J. 2019. â€œMicromechanical Modeling of High-

Strain Thin-Ply Composites,â€ AIAA Scitech 2019 Forum, pp:1751.

Helton, J. and Davis, F. 2003. â€œLatin hypercube sampling and the propagation of uncertainty

in analyses of complex systems,â€ Reliab Eng & Syst Saf., 81(1):23-69.

Zhang, Z. 2018. â€œImproved adam optimizer for deep neural networks,â€ 2018 IEEE/ACM

th International Symposium on Quality of Service (IWQoS), IEEE, pp:1-2.

### Refbacks

- There are currently no refbacks.