Open Access Open Access  Restricted Access Subscription Access

Low Thermal Conductivity Composite Skin Materials

STEVE SCHOENHOLTZ, ARTHUR GAVRIN, CHENGGANG CHEN

Abstract


Triton Systems, Inc. and our academic partner University of Dayton Research Institute (UDRI) developed and demonstrated a lightweight, affordable composite heat shield sandwich panel for aerospace applications capable of protecting an underlying Polymer Matrix Composite (PMC) sandwich panel from 500℉ external impingement. Our design outperforms the incumbent heat shield, a bolt-on metallic sheet with an air gap, in both thermal protection (15% lower skin surface temperature) and weight (40% lighter) at an equivalent thickness (about 0.3â€). Our panel has very low thermal conductivity (0.08 W/mK) but is also impact resistant, strong (~300 psi flatwise tensile strength), and tolerant to typical aerospace environmental conditions. Additionally, we demonstrated that our design could be produced as a curved panel configuration to match vehicle outer mold lines (OML’s). Now at Technology Readiness Level (TRL) 4, Triton’s panel design is ready to move to the next stage of development which we envision to be additional proof-of-concept testing including chemical and additional environmental exposure, cold exposure, thermal shock, and vibration as we scale up to a larger 4’x8’ panel.


DOI
10.12783/asc36/35882

Full Text:

PDF

Refbacks

  • There are currently no refbacks.