Toughening of Boron Carbide Composites by Hierarchical Microstructuring
Abstract
10.12783/asc36/35877
Full Text:
PDFReferences
Thévenot, F. “Boron Carbide-A Comprehensive Review.†Journal of the European Ceramic Society, Vol. 6, No. 4, 1990, pp. 205–225.
Murthy, S. R. “Elastic Properties of Boron Carbide.†Journal of Materials Science Letters, Vol. 4, No. 5, 1985, pp. 603–605.
Bauccio, M. ASM Engineered Materials Reference Book. ASM International, 1994.
Boron and Refractory Borides. Springer Berlin Heidelberg, 1977.
Hyukjae Lee, R. F. S. “Hardness and Fracture Toughness of Pressureless-Sintered Boron Carbide (B4C).†Journal American Ceramic Society, Vol. 85, No. 5, 2002, pp. 1291–1293.
Sigl, L. S., and Kleebe, H. â€J. “Microcracking in B 4 Câ€TiB 2 Composites.†Journal of the American Ceramic Society, Vol. 78, No. 9, 1995, pp. 2374–2380.
Skorokhod, V., and Krstic, V. D. “High Strength-High Toughness B4C-TiB2 Composites.†Journal of Materials Science Letters, Vol. 19, No. 3, 2000, pp. 237–239.
Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S. “High Strength B4C- TiB2 Composites Fabricated by Reaction Hot-Pressing.†Journal of the European Ceramic Society, Vol. 23, No. 7, 2003, pp. 1123–1130.
Huang, S. G., Vanmeensel, K., Malek, O. J. A., Van der Biest, O., and Vleugels, J. “Microstructure and Mechanical Properties of Pulsed Electric Current Sintered B4C-TiB2 Composites.†Materials Science and Engineering A, Vol. 528, No. 3, 2011, pp. 1302–1309.
Huang, S. G., Vanmeensel, K., Van der Biest, O., and Vleugels, J. “In Situ Synthesis and Densification of Submicrometer-Grained B4C-TiB2 Composites by Pulsed Electric Current Sintering.†Journal of the European Ceramic Society, Vol. 31, No. 4, 2011, pp. 637–644.
Baharvandi, H. R., Hadian, A. M., Abdizadeh, A., and Ehsani, N. Investigation on Addition of ZrO2-3 Mol% Y2O 3 Powder on Sintering Behavior and Mechanical Properties of B 4C. No. 41, 2006, pp. 5269–5272.
Suri, A. K., Subramanian, C., Sonber, J. K., and Ch Murthy, T. S. R. Synthesis and Consolidation of Boron Carbide: A Review. International Materials Reviews. 1. Volume 55, 4–38.
Kobayashi, T., Yoshida, K., and Yano, T. “Microstructure, Mechanical and Thermal Properties of B4C/CNT Composites with Al Additive.†Journal of Nuclear Materials, Vol. 440, Nos. 1–3,
, pp. 524–529.
Yavas, B., Sahin, F., Yucel, O., and Goller, G. “Effect of Particle Size, Heating Rate and CNT
Addition on Densification, Microstructure and Mechanical Properties of B4C Ceramics.â€
Ceramics International, Vol. 41, No. 7, 2015, pp. 8936–8944.
Tan, Y., Zhang, H., and Peng, S. “Electrically Conductive Graphene Nanoplatelet/Boron
Carbide Composites with High Hardness and Toughness.†Scripta Materialia, Vol. 114, 2016,
pp. 98–102.
Liu, L., Wang, Y., Li, X., Xu, L., Cao, X., Wang, Y., Wang, Z., Meng, C., Zhu, W., and
Ouyang, X. “Enhancing Toughness in Boron Carbide with Reduced Graphene Oxide.†Journal
of the American Ceramic Society, Vol. 99, No. 1, 2016, pp. 257–264.
Madhav Reddy, K., Guo, J. J., Shinoda, Y., Fujita, T., Hirata, A., Singh, J. P., McCauley, J. W.,
and Chen, M. W. “Enhanced Mechanical Properties of Nanocrystalline Boron Carbide by
Nanoporosity and Interface Phases.†Nature Communications, Vol. 3, 2012, p. 1052.
Guo, D., Song, S., Luo, R., Goddard, W. A., Chen, M., Reddy, K. M., and An, Q. “Grain
Boundary Sliding and Amorphization Are Responsible for the Reverse Hall-Petch Relation in
Superhard Nanocrystalline Boron Carbide.†Physical Review Letters, Vol. 121, No. 14, 2018.
Xia, Z., Riester, L., Curtin, W. A., Li, H., Sheldon, B. W., Liang, J., Chang, B., and Xu, J. M.
“Direct Observation of Toughening Mechanisms in Carbon Nanotube Ceramic Matrix
Composites.†Acta Materialia, Vol. 52, No. 4, 2004, pp. 931–944.
Xia, Z., Riester, L., Sheldon, B. W., Curtin, W. a, Liang, J., Yin, a, and Xu, J. M. “Mechanical
Properties of Highly Ordered Nanoporous Anodic Alumina Membranes.†Analysis, Vol. 6, No.
, 2004, pp. 131–139.
Dai, J., Singh, J., and Yamamoto, N. “Nonbrittle Nanopore Deformation of Anodic Aluminum
Oxide Membranes.†Journal of the American Ceramic Society, Vol. 101, No. 5, 2018, pp.
–2180.
Dai, J., Singh, J., and Yamamoto, N. Toughening of Boron Carbide Composites with
Hierarchical Microstructuring. No. 1 PartF, 2020.
Dai, J., Singh, J., and Yamamoto, N. “Fabrication and Characterization of FAST Sintered
Micro/Nano Boron Carbide Composites with Enhanced Fracture Toughness.†Journal of the
European Ceramic Society, 2020.
Alizadeh, A., Taheri-Nassaj, E., and Ehsani, N. “Synthesis of Boron Carbide Powder by a
Carbothermic Reduction Method.†Journal of the European Ceramic Society, Vol. 24, Nos. 10–
, 2004, pp. 3227–3234.
Weimer, A. W., Moore, W. G., Roach, R. P., Hitt, J. E., Dixit, R. S., and Pratsinis, S. E.
“Kinetics of Carbothermal Reduction Synthesis of Boron Carbide.†Journal of the American
Ceramic Society, Vol. 75, No. 9, 1992, pp. 2509–2514.
Jung, C. H., Lee, M. J., and Kim, C. J. “Preparation of Carbon-Free B4C Powder from B2O 3
Oxide by Carbothermal Reduction Process.†Materials Letters, Vol. 58, No. 5, 2004, pp. 609–
Dai, J., Pineda, E. J., Bednarcyk, B. A., Singh, J., and Yamamoto, N. Macro-Scale Testing and
Micromechanics Modeling of Fracture Behaviors for Boron Carbide Composites with
Hierarchical Microstructures. 2021.
ASTM C1421 - 18 Standard Test Methods for Determination of Fracture Toughness of
Advanced Ceramics at Ambient Temperature.
Aboudi, J., Pindera, M. J., and Arnold, S. M. “Linear Thermoelastic Higher-Order Theory for
Periodic Multiphase Materials.†Journal of Applied Mechanics, Transactions ASME, Vol. 68,
No. 5, 2001, pp. 697–707.
Aboudi, J., Arnold, S., and Bednarcyk, B. Micromechanics of Composite Materials. Elsevier
Inc., 2013.
ABOUDI, J. “The Generalized Method of Cells and High-Fidelity Generalized Method of Cells
Micromechanical Models—A Review.†Mechanics of Advanced Materials and Structures, Vol.
, Nos. 4–5, 2004, pp. 329–366.
Bednarcyk, B. A., and Arnold, S. M. MAC/GMC 4.0 User’s Manual-Keywords Manual. 2002.
Bednarcyk, B., and Arnold, S. “MAC/GMC 4. 0 User’s Manual: Example Problem Manual.â€
Bažant, Z. P., and Oh, B. H. “Crack Band Theory for Fracture of Concrete.†Matériaux et
Constructions, Vol. 16, No. 3, 1983, pp. 155–177.
Pineda, E. J., Bednarcyk, B. A., Waas, A. M., and Arnold, S. M. Implementation of a Smeared
Crack Band Model in a Micromechanics Framework. 2012.
Pineda, E. J., Bednarcyk, B. A., Waas, A. M., and Arnold, S. M. “Progressive Failure of a
Unidirectional Fiber-Reinforced Composite Using the Method of Cells: Discretization Objective
Computational Results.†International Journal of Solids and Structures, Vol. 50, No. 9, 2013,
pp. 1203–1216.
Meyer, P., and Waas, A. M. “FEM Predictions of Damage in Continous Fiber Ceramic Matrix
Composites under Transverse Tension Using the Crack Band Method.†Acta Materialia, Vol.
, 2016, pp. 292–303.
White, R. M., and Dickey, E. C. “The Effects of Residual Stress Distributions on Indentation-
Induced Microcracking in B4C-TiB2 Eutectic Ceramic Composites.†Journal of the American
Ceramic Society, Vol. 94, No. 11, 2011, pp. 4032–4039.
White, R. M., and Dickey, E. C. “Mechanical Properties and Deformation Mechanisms of B4CTiB2
Eutectic Composites.†Journal of the European Ceramic Society, Vol. 34, No. 9, 2014, pp.
–2050.
Refbacks
- There are currently no refbacks.