Open Access Open Access  Restricted Access Subscription Access

A Computational Model for the Piezoresistive Response of Hybrid Carbon Nanostructured Networks

ANGEL MORA, CARLOS MEDINA, FRANCIS AVILÉS

Abstract


Carbon nanotubes (CNTs) and graphenic sheets (GSs) are commonly used fillers for polymer nanocomposites. These nanocomposites can be used as selfsensing materials (strain and damage sensors) due to their piezoresistive response. CNT/GS hybrid fillers could be used to tune the nanocomposite’s piezoresistive response. The piezoresistive response of polymers filled with hybrid carbon nanofillers is a novel topic being studied recently experimentally, and very few computational works are available. Thus, a computational model is developed to study the piezoresistive response of polymers filled with CNT/GS hybrid fillers, reproducing geometries and conditions similar to those used in experiments. This computational model generates a network of three dimensional (3D) representations of carbon nanostructures inside a cube, which represents the polymer matrix. The network of nanostructures is turned into a network of resistors to obtain the electrical conductivity of the cube, and thus the polymer nanocomposite. Mechanical strain is applied via coupling with a finite element software. To reduce computational time, embedded elements are used in the finite element simulations. Capabilities and limitations of the proposed computational model are explored.


DOI
10.12783/asc36/35860

Full Text:

PDF

References


F. Aviles, A. May-Pat, M. A. Lopez-Manchado, R. Verdejo, A. Bachmatiuk, and M. H.

Rummeli. 2018. A comparative study on the mechanical, electrical and piezoresistive

properties of polymer composites using carbon nanostructures of dierent topology. Eu-

ropean Polymer Journal, 99:394{402.

H. Meeuw, J. Koerbelin, V. Wisniewski, A. Nia, A. Vazquez, M. Lohe, X. Feng, and B.

Fiedler. 2019. Carbon nanoparticles' impact on processability and physical properties of

epoxy resins{a comprehensive study covering rheological, electrical, thermo-mechanical,

and fracture properties (mode I and II). Polymers, 11(2):231.

A. Mora, P. Verma, and S. Kumar. 2020. Electrical conductivity of CNT/polymer

composites: 3D printing, measurements and modeling. Composites Part B: Engineering,

:107600.

J. Cob, A. I. Oliva-Aviles, F. Aviles, and A. I. Oliva. 2019. In

uence of concentration,

length and orientation of multiwall carbon nanotubes on the electromechanical response

of polymer nanocomposites. Materials Research Express, 6(11):115024.

A. Gbaguidi, S. Namilae, and D. Kim. 2020. Synergy eect in hybrid nanocomposites

based on carbon nanotubes and graphene nanoplatelets. Nanotechnology, 31(25):255704.

F. Aviles, A. I. Oliva-Aviles, and M. Cen-Puc. 2018. Piezoresistivity, strain, and damage

self-sensing of polymer composites lled with carbon nanostructures. Advanced Engi-

neering Materials, 20(7):1{23.

R. Ramalingame, Z. Hu, C. Gerlach, and O. Kanoun. 2017. Shoe insole with MWCNTPDMS-

composite sensors for pressure monitoring. 2017 IEEE SENSORS, pp. 1{3.

J. J. Ku-Herrera, V. La Saponara, and F. Aviles. 2018. Selective damage sensing in

multiscale hierarchical composites by tailoring the location of carbon nanotubes. Journal

of Intelligent Material Systems and Structures, 29(4):553{562.

A. Mora, F. Han, and G. Lubineau. 2018. Estimating and understanding the eciency

of nanoparticles in enhancing the conductivity of carbon nanotube/polymer composites.

Results in Physics, 10:81{90.

W. Bauhofer and J. Z. Kovacs. 2009. A review and analysis of electrical percolation

in carbon nanotube polymer composites. Composites Science and Technology, 69(10):

{1498.

J. M. Wernik and S. A. Meguid. 2010. Recent developments in multifunctional nanocomposites

using carbon nanotubes. Applied Mechanics Reviews, 63(5):050801.

B. Li and W. H. Zhong. 2011. Review on polymer/graphite nanoplatelet nanocomposites.

Journal of Materials Science, 46(17):5595{5614.

R. Pech-Piste, M. Cen-Puc, A. Balam, A. May-Pat, and F. Aviles. 2020. Multifunctional

sensing properties of polymer nanocomposites based on hybrid carbon nanostructures.

Materials Today Communications, 25:101472.

ISO/IEC. 2020. ISO/IEC 14882:2020: Programming languages { C++. International

Organization for Standardization (ISO), Geneva, Switzerland.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. 1988. A fast procedure for computing the

distance between complex objects in three-dimensional space. IEEE Journal on Robotics

and Automation, 4(2):193{203.

L. J. Seelen, J. T. Padding, and J. A. Kuipers. 2018. A granular discrete element

method for arbitrary convex particle shapes: Method and packing generation. Chemical

Engineering Science, 189:84{101.

A. Mora. 2018. A morphology study of nanoller networks in polymer nanocomposites:

Improving their electrical conductivity through better doping strategies. PhD thesis, King

Abdullah University of Science and Technology.

G. Lubineau, A. Mora, F. Han, I. N. Odeh, and R. Yaldiz. 2017. A morphological investigation

of conductive networks in polymers loaded with carbon nanotubes. Computational

Materials Science, 130:21{38.

L. A. Girifalco, M. Hodak, and R. S. Lee. 2000. Carbon nanotubes, buckyballs, ropes,

and a universal graphitic potential. Physical Review B, 62(19):13104{13110.

N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga.

Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor.

Carbon, 48(3):680{687.

J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard. 2013. Mechanical properties

of graphene nanoplatelet/epoxy composites. Journal of Applied Polymer Science, 128(6):

{4223.

B. Z. Jang and A. Zhamu. 2008. Processing of nanographene platelets (NGPs) and NGP

nanocomposites: A review. Journal of Materials Science, 43(15):5092{5101.

P. R. Bandaru. 2007. Electrical properties and applications of carbon nanotube structures.

Journal of Nanoscience and Nanotechnology, 7(4):1239{1267.

J. Li, P. Ma, W. S. Chow, C. K. To, B. Z. Tang, and J.-K. Kim. 2007. Correlations

between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes.

Advanced Functional Materials, 17(16):3207{3215.

C. Li, E. T. Thostenson, and T.-W. Chou. 2008. Sensors and actuators based on carbon

nanotubes and their composites: A review. Composites Science and Technology, 68(6):

{1249.

C. Li, E. T. Thostenson, and T.-W. Chou. 2007. Dominant role of tunneling resistance in

the electrical conductivity of carbon nanotube-based composites. Applied Physics Letters,

(22):223114.

N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga. 2008. Tunneling eect in a

polymer/carbon nanotube nanocomposite strain sensor. Acta Materialia, 56(13):2929{

C. Feng and L. Jiang. 2013. Micromechanics modeling of the electrical conductivity of

carbon nanotube (CNT)-polymer nanocomposites. Composites Part A: Applied Science

and Manufacturing, 47:143{149.

A. Mora, F. Han, and G. Lubineau. 2018. Computational modeling of electrically conductive

networks formed by graphene nanoplatelet-carbon nanotube hybrid particles.

Modelling and Simulation in Materials Science and Engineering, 26(3):035010.

A. Bowyer. 1981. Computing Dirichlet tessellations. The Computer Journal, 24(2):

{166.

D. Watson. 1981. Computing the n-dimensional Delaunay tessellation with application

to Voronoi polytopes. The Computer Journal, 24(2):167{172.

Y. Geng, S. J. Wang, and J. K. Kim. 2009. Preparation of graphite nanoplatelets and

graphene sheets. Journal of Colloid and Interface Science, 336(2):592{598.

Strem Chemicals, Inc. [Internet]. Accessed May 24, 2017. Graphene nanoplatelets.

https://www.strem.com/resource/5/literature sheets-nanomaterials.

C. Li and T.-W. Chou. 2007. A direct electrifying algorithm for backbone identication.

Journal of Physics A: Mathematical and Theoretical, 40(49):14679{14686.

C. Li, E. T. Thostenson, and T.-W. Chou. 2008. Eect of nanotube waviness on the

electrical conductivity of carbon nanotube-based composites. Composites Science and

Technology, 68(6):1445{1452.

C. Li and T.-W. Chou. 2009. Electrical conductivities of composites with aligned carbon

nanotubes. Journal of Nanoscience and Nanotechnology, 9(4):2518{2524.

L.-P. Simoneau, J. Villeneuve, C. M. Aguirre, R. Martel, P. Desjardins, and A. Rochefort.

In

uence of statistical distributions on the electrical properties of disordered and

aligned carbon nanotube networks. Journal of Applied Physics, 114(11):114312.

Y. Yu, G. Song, and L. Sun. 2010. Determinant role of tunneling resistance in electrical

conductivity of polymer composites reinforced by well dispersed carbon nanotubes.

Journal of Applied Physics, 108(8):084319.

V. Romanov, S. Lomov, I. Verpoest, and L. Gorbatikh. 2015. Modelling evidence of

stress concentration mitigation at the micro-scale in polymer composites by the addition

of carbon nanotubes. Carbon, 82:184{194.

X. Chen, A. R. Alian, and S. A. Meguid. 2019. Modeling of CNT-reinforced nanocomposite

with complex morphologies using modied embedded nite element technique.

Composite Structures, 227:111329.

M. Castellino, M. Rovere, M. I. Shahzad, and A. Tagliaferro. 2016. Conductivity in

carbon nanotube polymer composites: A comparison between model and experiment.

Composites Part A: Applied Science and Manufacturing, 87:237{242.

C. A. Sierra-Chi, H. Aguilar-Bolados, M. A. Lopez-Manchado, R. Verdejo, J. V. Cauich-

Rodrguez, and F. Aviles. 2020. Flexural electromechanical properties of multilayer

graphene sheet/carbon nanotube/vinyl ester hybrid nanocomposites. Composites Science

and Technology, 194:108164.


Refbacks

  • There are currently no refbacks.