

A Computational Model for the Piezoresistive Response of Hybrid Carbon Nanostructured Networks
Abstract
10.12783/asc36/35860
References
F. Aviles, A. May-Pat, M. A. Lopez-Manchado, R. Verdejo, A. Bachmatiuk, and M. H.
Rummeli. 2018. A comparative study on the mechanical, electrical and piezoresistive
properties of polymer composites using carbon nanostructures of dierent topology. Eu-
ropean Polymer Journal, 99:394{402.
H. Meeuw, J. Koerbelin, V. Wisniewski, A. Nia, A. Vazquez, M. Lohe, X. Feng, and B.
Fiedler. 2019. Carbon nanoparticles' impact on processability and physical properties of
epoxy resins{a comprehensive study covering rheological, electrical, thermo-mechanical,
and fracture properties (mode I and II). Polymers, 11(2):231.
A. Mora, P. Verma, and S. Kumar. 2020. Electrical conductivity of CNT/polymer
composites: 3D printing, measurements and modeling. Composites Part B: Engineering,
:107600.
J. Cob, A. I. Oliva-Aviles, F. Aviles, and A. I. Oliva. 2019. In
uence of concentration,
length and orientation of multiwall carbon nanotubes on the electromechanical response
of polymer nanocomposites. Materials Research Express, 6(11):115024.
A. Gbaguidi, S. Namilae, and D. Kim. 2020. Synergy eect in hybrid nanocomposites
based on carbon nanotubes and graphene nanoplatelets. Nanotechnology, 31(25):255704.
F. Aviles, A. I. Oliva-Aviles, and M. Cen-Puc. 2018. Piezoresistivity, strain, and damage
self-sensing of polymer composites lled with carbon nanostructures. Advanced Engi-
neering Materials, 20(7):1{23.
R. Ramalingame, Z. Hu, C. Gerlach, and O. Kanoun. 2017. Shoe insole with MWCNTPDMS-
composite sensors for pressure monitoring. 2017 IEEE SENSORS, pp. 1{3.
J. J. Ku-Herrera, V. La Saponara, and F. Aviles. 2018. Selective damage sensing in
multiscale hierarchical composites by tailoring the location of carbon nanotubes. Journal
of Intelligent Material Systems and Structures, 29(4):553{562.
A. Mora, F. Han, and G. Lubineau. 2018. Estimating and understanding the eciency
of nanoparticles in enhancing the conductivity of carbon nanotube/polymer composites.
Results in Physics, 10:81{90.
W. Bauhofer and J. Z. Kovacs. 2009. A review and analysis of electrical percolation
in carbon nanotube polymer composites. Composites Science and Technology, 69(10):
{1498.
J. M. Wernik and S. A. Meguid. 2010. Recent developments in multifunctional nanocomposites
using carbon nanotubes. Applied Mechanics Reviews, 63(5):050801.
B. Li and W. H. Zhong. 2011. Review on polymer/graphite nanoplatelet nanocomposites.
Journal of Materials Science, 46(17):5595{5614.
R. Pech-Piste, M. Cen-Puc, A. Balam, A. May-Pat, and F. Aviles. 2020. Multifunctional
sensing properties of polymer nanocomposites based on hybrid carbon nanostructures.
Materials Today Communications, 25:101472.
ISO/IEC. 2020. ISO/IEC 14882:2020: Programming languages { C++. International
Organization for Standardization (ISO), Geneva, Switzerland.
E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. 1988. A fast procedure for computing the
distance between complex objects in three-dimensional space. IEEE Journal on Robotics
and Automation, 4(2):193{203.
L. J. Seelen, J. T. Padding, and J. A. Kuipers. 2018. A granular discrete element
method for arbitrary convex particle shapes: Method and packing generation. Chemical
Engineering Science, 189:84{101.
A. Mora. 2018. A morphology study of nanoller networks in polymer nanocomposites:
Improving their electrical conductivity through better doping strategies. PhD thesis, King
Abdullah University of Science and Technology.
G. Lubineau, A. Mora, F. Han, I. N. Odeh, and R. Yaldiz. 2017. A morphological investigation
of conductive networks in polymers loaded with carbon nanotubes. Computational
Materials Science, 130:21{38.
L. A. Girifalco, M. Hodak, and R. S. Lee. 2000. Carbon nanotubes, buckyballs, ropes,
and a universal graphitic potential. Physical Review B, 62(19):13104{13110.
N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga.
Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor.
Carbon, 48(3):680{687.
J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard. 2013. Mechanical properties
of graphene nanoplatelet/epoxy composites. Journal of Applied Polymer Science, 128(6):
{4223.
B. Z. Jang and A. Zhamu. 2008. Processing of nanographene platelets (NGPs) and NGP
nanocomposites: A review. Journal of Materials Science, 43(15):5092{5101.
P. R. Bandaru. 2007. Electrical properties and applications of carbon nanotube structures.
Journal of Nanoscience and Nanotechnology, 7(4):1239{1267.
J. Li, P. Ma, W. S. Chow, C. K. To, B. Z. Tang, and J.-K. Kim. 2007. Correlations
between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes.
Advanced Functional Materials, 17(16):3207{3215.
C. Li, E. T. Thostenson, and T.-W. Chou. 2008. Sensors and actuators based on carbon
nanotubes and their composites: A review. Composites Science and Technology, 68(6):
{1249.
C. Li, E. T. Thostenson, and T.-W. Chou. 2007. Dominant role of tunneling resistance in
the electrical conductivity of carbon nanotube-based composites. Applied Physics Letters,
(22):223114.
N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga. 2008. Tunneling eect in a
polymer/carbon nanotube nanocomposite strain sensor. Acta Materialia, 56(13):2929{
C. Feng and L. Jiang. 2013. Micromechanics modeling of the electrical conductivity of
carbon nanotube (CNT)-polymer nanocomposites. Composites Part A: Applied Science
and Manufacturing, 47:143{149.
A. Mora, F. Han, and G. Lubineau. 2018. Computational modeling of electrically conductive
networks formed by graphene nanoplatelet-carbon nanotube hybrid particles.
Modelling and Simulation in Materials Science and Engineering, 26(3):035010.
A. Bowyer. 1981. Computing Dirichlet tessellations. The Computer Journal, 24(2):
{166.
D. Watson. 1981. Computing the n-dimensional Delaunay tessellation with application
to Voronoi polytopes. The Computer Journal, 24(2):167{172.
Y. Geng, S. J. Wang, and J. K. Kim. 2009. Preparation of graphite nanoplatelets and
graphene sheets. Journal of Colloid and Interface Science, 336(2):592{598.
Strem Chemicals, Inc. [Internet]. Accessed May 24, 2017. Graphene nanoplatelets.
https://www.strem.com/resource/5/literature sheets-nanomaterials.
C. Li and T.-W. Chou. 2007. A direct electrifying algorithm for backbone identication.
Journal of Physics A: Mathematical and Theoretical, 40(49):14679{14686.
C. Li, E. T. Thostenson, and T.-W. Chou. 2008. Eect of nanotube waviness on the
electrical conductivity of carbon nanotube-based composites. Composites Science and
Technology, 68(6):1445{1452.
C. Li and T.-W. Chou. 2009. Electrical conductivities of composites with aligned carbon
nanotubes. Journal of Nanoscience and Nanotechnology, 9(4):2518{2524.
L.-P. Simoneau, J. Villeneuve, C. M. Aguirre, R. Martel, P. Desjardins, and A. Rochefort.
In
uence of statistical distributions on the electrical properties of disordered and
aligned carbon nanotube networks. Journal of Applied Physics, 114(11):114312.
Y. Yu, G. Song, and L. Sun. 2010. Determinant role of tunneling resistance in electrical
conductivity of polymer composites reinforced by well dispersed carbon nanotubes.
Journal of Applied Physics, 108(8):084319.
V. Romanov, S. Lomov, I. Verpoest, and L. Gorbatikh. 2015. Modelling evidence of
stress concentration mitigation at the micro-scale in polymer composites by the addition
of carbon nanotubes. Carbon, 82:184{194.
X. Chen, A. R. Alian, and S. A. Meguid. 2019. Modeling of CNT-reinforced nanocomposite
with complex morphologies using modied embedded nite element technique.
Composite Structures, 227:111329.
M. Castellino, M. Rovere, M. I. Shahzad, and A. Tagliaferro. 2016. Conductivity in
carbon nanotube polymer composites: A comparison between model and experiment.
Composites Part A: Applied Science and Manufacturing, 87:237{242.
C. A. Sierra-Chi, H. Aguilar-Bolados, M. A. Lopez-Manchado, R. Verdejo, J. V. Cauich-
Rodrguez, and F. Aviles. 2020. Flexural electromechanical properties of multilayer
graphene sheet/carbon nanotube/vinyl ester hybrid nanocomposites. Composites Science
and Technology, 194:108164.
Refbacks
- There are currently no refbacks.