Open Access Open Access  Restricted Access Subscription Access

Study on Cooling Rate-Dependent Mechanical Properties of Thermoplastic Composites

RYO HIGUCHI, SOTA OSHIMA, SHU MINAKUCHI, TOMOHIRO YOKOZEKI, TAKAHIRA AOKI

Abstract


This study investigates the effect of solidification conditions on the crystallization behaviors and mechanical properties of thermoplastic resin and carbon fiber reinforced thermoplastics (CFRTP). In particular, the crystallinity, elastic modulus, plastic behavior, strength, and fracture toughness were investigated in Polyphenylene Sulfide (PPS) and CF/PPS manufactured by different cooling rates. Based on experimental results, the cooling-rate-dependent elasto-plastic constitutive law of resin was developed empirically. Finally, the homogenized simulations of CF/PPS were conducted using the developed empirical model, and predicted results were compared with experiments.


DOI
10.12783/asc36/35841

Full Text:

PDF

References


Jar, P. Y., Mulone, R., Davies, P., Kausch, H. H. 1993. “A study of the effect of forming temperature on the mechanical behaviour of carbon-fibre/peek composites,†Composites science and technology, 46(1): 7-19.

Bullions, T., Mehta, R. H., Tan, B., McGrath, J. E., Kranbuehl, D., Loos, A. C. 1999. “Mode I and Mode II fracture toughness of high-performance 3000 g mole− 1 reactive poly (etherimide)/carbon fiber composites,†Composites Part A: Applied Science and Manufacturing, 30(2): 153-162.

Gao, S. L., Kim, J. K. 2000. “Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion,†Composites Part A: Applied science and manufacturing, 31(6): 517-530.

Gao, S. L., Kim, J. K. 2001. “Cooling rate influences in carbon fibre/PEEK composites. Part II: interlaminar fracture toughness,†Composites Part A: Applied science and manufacturing, 32(6): 763-774.

Gao, S. L., Kim, J. K. 2001. “Cooling rate influences in carbon fibre/PEEK composites. Part III: impact damage performance,†Composites Part A: Applied Science and Manufacturing, 32(6): 775-785.

Gao, S. L., Kim, J. K. 2002. “Correlation among crystalline morphology of PEEK, interface bond strength, and inâ€plane mechanical properties of carbon/PEEK composites,†Journal of applied polymer science, 84(6): 1155-1167.

Lessard, H., Lebrun, G., Benkaddour, A., Pham, X. T. 2015. “Influence of process parameters on the thermostamping of a [0/90]12 carbon/polyether ether ketone laminate,†Composites Part A: Applied Science and Manufacturing, 70: 59-68.

Taketa, I., Kalinka, G., Gorbatikh, L., Lomov, S. V., Verpoest, I. 2020. “Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices,†Advanced Composite Materials, 29(1): 101-113.

Parlevliet, P. P., Bersee, H. E., Beukers, A. 2006. “Residual stresses in thermoplastic composites—A study of the literature—Part I: Formation of residual stresses,†Composites Part A: Applied Science and Manufacturing, 37(11), 1847-1857.

Parlevliet, P. P., Bersee, H. E., Beukers, A. 2007. “Residual stresses in thermoplastic composites—A study of the literature—Part II: Experimental techniques,†Composites Part A: Applied Science and Manufacturing, 38(3), 651-665.

Parlevliet, P. P., Bersee, H. E., Beukers, A. 2007. “Residual stresses in thermoplastic composites–a study of the literature. Part III: Effects of thermal residual stresses,†Composites Part A: Applied Science and Manufacturing, 38(6), 1581-1596.

Salomi, A., Garstka, T., Potter, K., Greco, A., Maffezzoli, A. 2008. “Spring-in angle as molding distortion for thermoplastic matrix composite,†Composites Science and technology, 68(14): 3047-3054.

Jain, L. K., Hou, M., Ye, L., Mai, Y. W. 1998. “Spring-in study of the aileron rib manufactured from advanced thermoplastic composite,†Composites Part A: Applied Science and Manufacturing, 29(8): 973-979.

Trende, A., Åström, B. T., Nilsson, G. 2000. “Modelling of residual stresses in compression moulded glass-mat reinforced thermoplastics,†Composites Part A: Applied Science and Manufacturing, 31(11): 1241-1254.

Tsukada, T., Takeda, S. I., Minakuchi, S., Iwahori, Y., Takeda, N. 2017. “Evaluation of the influence of cooling rate on residual strain development in unidirectional carbon fibre/polyphenylenesulfide laminates using embedded fibre Bragg grating sensors,†Journal of Composite Materials, 51(13): 1849-1859.

Tsukada, T., Minakuchi, S., Takeda, N. 2020. “Assessing residual stress redistribution during annealing in thick thermoplastic composites using optical fiber sensors,†Journal of Thermoplastic Composite Materials, 33(1): 53-68.

Tsukada, T., Minakuchi, S., Takeda, N. 2019. “Identification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensors,†Journal of Composite Materials, 53(24): 3445-3458.

TenCate Advanced Composites CETEX-PPS Guide Lines.

Fakirov, S., Fischer, E. W., Hoffmann, R., Schmidt, G. F. 1977. “Structure and properties of poly (ethylene terephthalate) crystallized by annealing in the highly oriented state: 2. Melting behaviour and the mosaic block structure of the crystalline layers,†Polymer, 18(11): 1121-1129.

Lee, L. H., Vanselow, J. J., Schneider, N. S. 1988. “Effects of mechanical drawing on the structure and properties of PEEK,†Polymer Engineering & Science, 28(3): 181-187.

Boyce, M. C., Socrate, S., Llana, P. G. 2000. “Constitutive model for the finite deformation stress–strain behavior of poly (ethylene terephthalate) above the glass transition,†Polymer, 41(6): 2183-2201.

Ahzi, S., Makradi, A., Gregory, R. V., Edie, D. D. 2003. “Modeling of deformation behavior and strain-induced crystallization in poly (ethylene terephthalate) above the glass transition temperature,†Mechanics of Materials, 35(12): 1139-1148.

Tomita, Y., Uchida, M. 2005. “Computational characterization of micro-to mesoscopic deformation behavior of semicrystalline polymers,†International Journal of Mechanical Sciences, 47(4-5): 687-700.

Dusunceli, N., Colak, O. U. 2008. “Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers,†International Journal of Plasticity, 24(7): 1224-1242.

Ayoub, G., Zaïri, F., Naït-Abdelaziz, M., Gloaguen, J. M. 2010. “Modelling large deformation behaviour under loading–unloading of semicrystalline polymers: application to a high density polyethylene,†International Journal of Plasticity, 26(3): 329-347.

Takahashi, J., Yamamoto, T., Shizawa, K. 2010. “Modeling and simulation for ductile fracture prediction of crystalline polymer based on craze behavior,†International journal of mechanical sciences, 52(2): 266-276.

Uchida, M., Tada, N. 2013. “Micro-, meso-to macroscopic modeling of deformation behavior of semi-crystalline polymer,†International Journal of Plasticity, 49: 164-184.

Drucker, D. C., Prager, W. 1952. “Soil mechanics and plastic analysis or limit design,†Quarterly of applied mathematics, 10(2): 157-165.

Hexcel Corporation, HexTow® AS4A Carbon Fiber Datasheet, 2020. https://www.hexcel.com/user_area/content_media/raw/AS4A_HexTow_DataSheet.pdf

Soden, P. D., Hinton, M. J., Kaddour, A. S. 2004. “Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates,†in: Failure criteria in fibre-reinforced-polymer composites, Elsevier, 30-51.

González, C., LLorca, J. 2007. “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling,†Composites Science and Technology, 67(13): 2795-2806.

Melro, A. R., Camanho, P. P., Pires, F. A., Pinho, S. T. 2013. Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II–Micromechanical analyses,†International Journal of Solids and Structures, 50(11-12): 1906-1915.

Bai, X., Bessa, M. A., Melro, A. R., Camanho, P. P., Guo, L., Liu, W. K. 2015. “High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites,†Composite Structures, 134: 132-141.

Li, S., Warrior, N., Zou, Z., Almaskari, F. 2011. “A unit cell for FE analysis of materials with the microstructure of a staggered pattern,†Composites Part A: Applied Science and Manufacturing, 42(7): 801-811.

Higuchi, R., Yokozeki, T., Nagashima, T., Aoki, T. 2019. “Evaluation of mechanical properties of noncircular carbon fiber reinforced plastics by using XFEM-based computational micromechanics,†Composites Part A: Applied Science and Manufacturing, 126, 105556.

Higuchi, R., Aoki, R., Yokozeki, T., Okabe, T. 2020. “Evaluation of the in-situ damage and strength properties of thin-ply CFRP laminates by micro-scale finite element analysis,†Advanced Composite Materials, 29(5): 475-493.


Refbacks

  • There are currently no refbacks.