

Study on Cooling Rate-Dependent Mechanical Properties of Thermoplastic Composites
Abstract
10.12783/asc36/35841
References
Jar, P. Y., Mulone, R., Davies, P., Kausch, H. H. 1993. “A study of the effect of forming temperature on the mechanical behaviour of carbon-fibre/peek composites,†Composites science and technology, 46(1): 7-19.
Bullions, T., Mehta, R. H., Tan, B., McGrath, J. E., Kranbuehl, D., Loos, A. C. 1999. “Mode I and Mode II fracture toughness of high-performance 3000 g mole− 1 reactive poly (etherimide)/carbon fiber composites,†Composites Part A: Applied Science and Manufacturing, 30(2): 153-162.
Gao, S. L., Kim, J. K. 2000. “Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion,†Composites Part A: Applied science and manufacturing, 31(6): 517-530.
Gao, S. L., Kim, J. K. 2001. “Cooling rate influences in carbon fibre/PEEK composites. Part II: interlaminar fracture toughness,†Composites Part A: Applied science and manufacturing, 32(6): 763-774.
Gao, S. L., Kim, J. K. 2001. “Cooling rate influences in carbon fibre/PEEK composites. Part III: impact damage performance,†Composites Part A: Applied Science and Manufacturing, 32(6): 775-785.
Gao, S. L., Kim, J. K. 2002. “Correlation among crystalline morphology of PEEK, interface bond strength, and inâ€plane mechanical properties of carbon/PEEK composites,†Journal of applied polymer science, 84(6): 1155-1167.
Lessard, H., Lebrun, G., Benkaddour, A., Pham, X. T. 2015. “Influence of process parameters on the thermostamping of a [0/90]12 carbon/polyether ether ketone laminate,†Composites Part A: Applied Science and Manufacturing, 70: 59-68.
Taketa, I., Kalinka, G., Gorbatikh, L., Lomov, S. V., Verpoest, I. 2020. “Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices,†Advanced Composite Materials, 29(1): 101-113.
Parlevliet, P. P., Bersee, H. E., Beukers, A. 2006. “Residual stresses in thermoplastic composites—A study of the literature—Part I: Formation of residual stresses,†Composites Part A: Applied Science and Manufacturing, 37(11), 1847-1857.
Parlevliet, P. P., Bersee, H. E., Beukers, A. 2007. “Residual stresses in thermoplastic composites—A study of the literature—Part II: Experimental techniques,†Composites Part A: Applied Science and Manufacturing, 38(3), 651-665.
Parlevliet, P. P., Bersee, H. E., Beukers, A. 2007. “Residual stresses in thermoplastic composites–a study of the literature. Part III: Effects of thermal residual stresses,†Composites Part A: Applied Science and Manufacturing, 38(6), 1581-1596.
Salomi, A., Garstka, T., Potter, K., Greco, A., Maffezzoli, A. 2008. “Spring-in angle as molding distortion for thermoplastic matrix composite,†Composites Science and technology, 68(14): 3047-3054.
Jain, L. K., Hou, M., Ye, L., Mai, Y. W. 1998. “Spring-in study of the aileron rib manufactured from advanced thermoplastic composite,†Composites Part A: Applied Science and Manufacturing, 29(8): 973-979.
Trende, A., Åström, B. T., Nilsson, G. 2000. “Modelling of residual stresses in compression moulded glass-mat reinforced thermoplastics,†Composites Part A: Applied Science and Manufacturing, 31(11): 1241-1254.
Tsukada, T., Takeda, S. I., Minakuchi, S., Iwahori, Y., Takeda, N. 2017. “Evaluation of the influence of cooling rate on residual strain development in unidirectional carbon fibre/polyphenylenesulfide laminates using embedded fibre Bragg grating sensors,†Journal of Composite Materials, 51(13): 1849-1859.
Tsukada, T., Minakuchi, S., Takeda, N. 2020. “Assessing residual stress redistribution during annealing in thick thermoplastic composites using optical fiber sensors,†Journal of Thermoplastic Composite Materials, 33(1): 53-68.
Tsukada, T., Minakuchi, S., Takeda, N. 2019. “Identification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensors,†Journal of Composite Materials, 53(24): 3445-3458.
TenCate Advanced Composites CETEX-PPS Guide Lines.
Fakirov, S., Fischer, E. W., Hoffmann, R., Schmidt, G. F. 1977. “Structure and properties of poly (ethylene terephthalate) crystallized by annealing in the highly oriented state: 2. Melting behaviour and the mosaic block structure of the crystalline layers,†Polymer, 18(11): 1121-1129.
Lee, L. H., Vanselow, J. J., Schneider, N. S. 1988. “Effects of mechanical drawing on the structure and properties of PEEK,†Polymer Engineering & Science, 28(3): 181-187.
Boyce, M. C., Socrate, S., Llana, P. G. 2000. “Constitutive model for the finite deformation stress–strain behavior of poly (ethylene terephthalate) above the glass transition,†Polymer, 41(6): 2183-2201.
Ahzi, S., Makradi, A., Gregory, R. V., Edie, D. D. 2003. “Modeling of deformation behavior and strain-induced crystallization in poly (ethylene terephthalate) above the glass transition temperature,†Mechanics of Materials, 35(12): 1139-1148.
Tomita, Y., Uchida, M. 2005. “Computational characterization of micro-to mesoscopic deformation behavior of semicrystalline polymers,†International Journal of Mechanical Sciences, 47(4-5): 687-700.
Dusunceli, N., Colak, O. U. 2008. “Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers,†International Journal of Plasticity, 24(7): 1224-1242.
Ayoub, G., Zaïri, F., Naït-Abdelaziz, M., Gloaguen, J. M. 2010. “Modelling large deformation behaviour under loading–unloading of semicrystalline polymers: application to a high density polyethylene,†International Journal of Plasticity, 26(3): 329-347.
Takahashi, J., Yamamoto, T., Shizawa, K. 2010. “Modeling and simulation for ductile fracture prediction of crystalline polymer based on craze behavior,†International journal of mechanical sciences, 52(2): 266-276.
Uchida, M., Tada, N. 2013. “Micro-, meso-to macroscopic modeling of deformation behavior of semi-crystalline polymer,†International Journal of Plasticity, 49: 164-184.
Drucker, D. C., Prager, W. 1952. “Soil mechanics and plastic analysis or limit design,†Quarterly of applied mathematics, 10(2): 157-165.
Hexcel Corporation, HexTow® AS4A Carbon Fiber Datasheet, 2020. https://www.hexcel.com/user_area/content_media/raw/AS4A_HexTow_DataSheet.pdf
Soden, P. D., Hinton, M. J., Kaddour, A. S. 2004. “Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates,†in: Failure criteria in fibre-reinforced-polymer composites, Elsevier, 30-51.
González, C., LLorca, J. 2007. “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling,†Composites Science and Technology, 67(13): 2795-2806.
Melro, A. R., Camanho, P. P., Pires, F. A., Pinho, S. T. 2013. Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II–Micromechanical analyses,†International Journal of Solids and Structures, 50(11-12): 1906-1915.
Bai, X., Bessa, M. A., Melro, A. R., Camanho, P. P., Guo, L., Liu, W. K. 2015. “High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites,†Composite Structures, 134: 132-141.
Li, S., Warrior, N., Zou, Z., Almaskari, F. 2011. “A unit cell for FE analysis of materials with the microstructure of a staggered pattern,†Composites Part A: Applied Science and Manufacturing, 42(7): 801-811.
Higuchi, R., Yokozeki, T., Nagashima, T., Aoki, T. 2019. “Evaluation of mechanical properties of noncircular carbon fiber reinforced plastics by using XFEM-based computational micromechanics,†Composites Part A: Applied Science and Manufacturing, 126, 105556.
Higuchi, R., Aoki, R., Yokozeki, T., Okabe, T. 2020. “Evaluation of the in-situ damage and strength properties of thin-ply CFRP laminates by micro-scale finite element analysis,†Advanced Composite Materials, 29(5): 475-493.
Refbacks
- There are currently no refbacks.