Ordinary Differential Equations with Machine Learning for Prediction of Smart Composite Fracture Toughness
Abstract
10.12783/asc36/35820
Full Text:
PDFReferences
Keith T. Butler, Daniel W. Davies, Hugh Cartwright, Olexandr Isayev & Aron Walsh. "Machine learning
for molecular and materials science." Nature volume 559 (2018): 547-555.
Jing Wei, Xuan Chu, Xiang-Yu Sun, Kun Xu, Hui-Xiong Deng, Jigen Chen, Zhongming Wei, Ming Lei.
"Machine learning in materials science." InfoMat 1.3 (2019).
Albert P. Bartók, Sandip De, Carl Poelking, Noam Bernstein, James R. Kermode, Gábor Csányi and
Michele Ceriotti. "Machine learning unifies the modeling of materials and molecules." Science Advances
12 (2017).
Ghanshyam Pilania, Chenchen Wang, Xun Jiang, Sanguthevar Rajasekaran & Ramamurthy Ramprasad.
"Accelerating materials property predictions using machine learning." Scientific Reports 3 (2013).
Aykut, Åžeref. "Surface Roughness Prediction in Machining Castamide Material Using ANN ." Acta
Polytechnica Hungarica 8.2 (2011).
A. Tugrul Seyhan, Gokmen Tayfur, Murat Karakurta and Meting Tanog'lu. "Artificial neural network
(ANN) prediction of compressive strength of VARTM processed polymer composites." Computational
Materials Science 34.1 (2005): 99-105.
Deepayan Gope, Prakash Chandra Gope, Aruna Thakur, Abhishek Yadav. "Application of artificial neural
network for predicting crack growth direction in multiple cracks geometry." Applied Soft Computing 30
(2015): 514-528.
K. Zarrabi, W.W. Lu, A.K. Hellier. "An Artificial Neural Network Approach to Fatigue Crack Growth."
Advanced Materials Research 275 (2011): 3-6.
Konstantin N. Nechval, Nicholas A. Nechval, Irina Bausova , Daina Å Ä·iltere,Vladimir F. Strelchonok.
"PREDICTION OF FATIGUE CRACK GROWTH PROCESS VIA ARTIFICIAL NEURAL NETWORK
TECHNIQUE." International Scientific Journal of Computing 5.3 (2006): 1-12.
Seyedali Sadeghi, Mehdi Ahmadi Najafabadi, Yashar Javadi, Mohammadjavad Mohammadisefat. "Using
ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in
the friction stir welding of aluminum plates." Materials & Design 52 (2013): 870-880.
Compass. "Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-
Reinforced Polymer Matrix Composites." Active Standard ASTM D5528 (n.d.).
G. Colab. [Online]. Available: https://colab.research.google.com/notebooks/intro.ipynb?utm_source=scsindex.
[Accessed March 2021].
Python. [Online]. Available: https://www.python.org/. [Accessed February 2021].
Djalal Eddine KHODJA, Aissa KHELDOUN and Larbi REFOUFI. "Sigmoid Function Approximation for
ANN Implementation in FPGA Devices." Recent Researches in Circuits, Systems, Electronics, Control and
Signal Processing 9 (2010).
L. Breiman, "Random Forests," Machine Learning, vol. 45, pp. 5-32, 2001.
Pal, M. "Random forest classifier for remote sensing classification." International Journal of Remote
Sensing 26.1 (2005).
Ahmad Taher Azar, Hanaa Ismail Elshazly, Aboul Ella Hassanien, Abeer Mohamed Elkorany. "A random
forest classifier for lymph diseases." Computer Methods and Programs in Biomedicine 113.2 (2014): 465-
Achmad Widodo, Bo-Suk Yang. "Support vector machine in machine condition monitoring and fault
diagnosis." Mechanical Systems and Signal Processing 21.6 (2007): 2560-2574.
Rory Mitchell, Eibe Frank. "Accelerating the XGBoost algorithm using GPU computing." PeerJ Computer
Science (2017).
Refbacks
- There are currently no refbacks.