Numerical Model of Tubular Composite Sandwich Structures under Low-Velocity Impact
Abstract
10.12783/asc36/35809
Full Text:
PDFReferences
Schubel, P. M., J.-J. Luo, and I. M. Daniel. 2007. “Impact and Post Impact Behavior of
Composite Sandwich Panels,†Compos. Part A Appl. Sci. Manuf., 38(3):1051-1057.
Yang, B., Z. Wang, L. Zhou, J. Zhang, L. Tong, and W. Liang. 2015. “Study on the Low-
Velocity Impact Response and Cai Behavior of Foam-Filled Sandwich Panels with Hybrid
Facesheet,†Compos. Struct., 132:1129-1140.
Buitrago,B. L., C. Santiuste, S. Sánchez-Sáez, E. Barbero, and C. Navarro. 2010. “Modelling of
Composite Sandwich Structures with Honeycomb Core Subjected to High-Velocity impact,â€
Compos. Struct., 92(9):2090-2096,
He,Y., G. Tian, M. Pan, and D. Chen. 2014. “Non-Destructive Testing of Low-Energy Impact in
CFRP Laminates and Interior Defects in Honeycomb Sandwich Using Scanning Pulsed Eddy
Current,†Compos. Part B Eng., 59:196-203.
Liu, H., J. Liu, Y. Ding, and J. P. Dear. 2020. “A Three-Dimensional Elastic-Plastic Damage
Model for Predicting the Impact Behaviour of Fibre-Reinforced Polymer-Matrix Composites,â€
Compos. Part B Eng., 201:108389.
Zhang, D., Q. Fei, and P. Zhang. 2017. “Drop-Weight Impact Behavior of Honeycomb
Sandwich Panels Under a Spherical Impactor,†Compos. Struct., 168:633-645.
Meran, A. P., T. Toprak, and A. Muğan. 2014. “Numerical and Experimental Study of
Crashworthiness Parameters of Honeycomb Structures,†Thin-Walled Struct., 78:87-94.
Tan, K. T., N. Watanabe, and Y. Iwahori. 2011. “X-Ray Radiography and Micro-Computed
Tomography Examination of Damage Characteristics in Stitched Composites Subjected to
Impact Loading,†Compos. Part B Eng., 42(4):874-884.
Fiore, V. L., Calabrese, T. Scalici, and A. Valenza. 2020. “Evolution of the Bearing Failure
Map of Pinned Flax Composite Laminates Aged in Marine Environment,†Compos. Part B
Eng., 187:107864.
Zhang, X., F. Xu, Y. Zang, and W. Feng. 2020. “Experimental and Numerical Investigation on
Damage Behavior of Honeycomb Sandwich Panel Subjected to Low-Velocity Impact,â€
Compos. Struct., 236:111882
Zhang, C., and K. T. Tan. 2020. “Low-Velocity Impact Response and Compression After
Impact Behavior of Tubular Composite Sandwich Structures,†Compos. Part B Eng., 108026,
Zhu, Y., and Y. Sun. 2020. “Dynamic Response of Foam Core Sandwich Panel with Composite
Facesheets During Low-Velocity Impact and Penetration,†Int. J. Impact Eng., 139:103508.
Birman, V., and G. A. Kardomateas. 2018. “Review of Current Trends in Research and
Applications of Sandwich Structures,†Compos. Part B Eng., 142:221-240.
Kaiser, I., and K. T. Tan. 2020. “Damage and Strength Analysis of Carbon Fiber Reinforced
Polymer and Titanium Tubular-Lap Joint Using Hybrid Adhesive Design,†Int. J. Adhes.
Adhes., 103:102710.
Riccio, A., A. De Luca, G. Di Felice, and F. Caputo. 2014. “Modelling the Simulation of Impact
Induced Damage Onset and Evolution in Composites,†Compos. Part B Eng., 66:340-347.
Pietrek, M., and P. Horst. 2018. “Analysis and Numerical Prediction of the Delamination
Behavior of Debonded Asymmetric Sandwich Shells with a Thin-Walled Skin Considering
Plastic Deformation,†Compos. Struct., 188:220-232.
Sun, G., X. Huo, H. Wang, P. J. Hazell, and Q. Li. 2021. “On the Structural Parameters of
Honeycomb-Core Sandwich Panels Against Low-Velocity Impact,†Compos. Part B Eng.,
:108881.
Refbacks
- There are currently no refbacks.