

Microstructural Simulation of Superelastic Zirconia-Reinforced Metal Composite for Energy Dissipation Applications
Abstract
10.12783/asc36/35795
References
Lai, A., Z. Du, C. L. Gan, and C. A. Schuh. 2013, “Shape Memory and Superelastic Ceramics
at Small Scales,†Science, 341(6153):1505–1508.
Reyes-Morel, P. E. and I.W. Chen. 1988, “Transformation Plasticity of CeO2-Stabilized
Tetragonal Zirconia Polycrystals: I, Stress Assistance and Autocatalysis,†Journal of the
American Ceramic Society, 71(5):343–353.
Du, Z., X. M. Zeng, Q. Liu, C. A. Schuh, and C. L. Gan. 2017, “Superelasticity in Micro-
Scale Shape Memory Ceramic Particles,†Acta Materialia, 123:255–263.
Du, Z., P. Ye, X. M. Zeng, C. A. Schuh, N. Tamura, X.R. Zhou, and C. L. Gan. 2017,
“Synthesis of Monodisperse CeO2-ZrO2 Particles Exhibiting Cyclic Superelasticity Over
Hundreds of Cycles,†Journal of the American Ceramic Society, 100(9):4199–4208.
Zeng, X. M., A. Lai, C. L. Gan, and C. A. Schuh. 2016, “Crystal Orientation Dependence of
the Stress-Induced Martensitic Transformation in Zirconia-Based Shape Memory Ceramics,â€
Acta Materialia, 116:124–135.
Zeng, X., Z. Du, C. A. Schuh, and C. Gan. 2017, “Enhanced Shape Memory and
Superelasticity in Small-Volume Ceramics: A Perspective on the Controlling Factors,†MRS
Communications, 7(4):747–754.
Tuan, W., R. Chen, T. Wang, C. Cheng, and P. Kuo. 2002, “Mechanical Properties of
Al2O3/ZrO2 Composites,†Journal of the European Ceramic Society, 22(16):2827–2833.
Naglieri, V., P. Palmero, L. Montanaro, and J. Chevalier. 2013, “Elaboration of Alumina-
Zirconia Composites: Role of the Zirconia Content on the Microstructure and Mechanical
Properties,†Materials, 6(5):2090–2102.
Yang, G., J. C. Li, G. C. Wang, M. Yashima, S. L. Min, and T. C. Chen. 2006, “Investigation
on Strengthening and Toughening Mechanisms of Ce-TZP/Al2O3 Nanocomposites,â€
Metallurgical and Materials Transactions A, 37(6):1969–1975.
Deville, S., J. Chevalier, G. Fantozzi, J. F. Bartolomé, J. Requena, J. S. Moya, R. Torrecillas,
and L. A. DıÌaz. 2003, “Low-Temperature Ageing of Zirconia-Toughened Alumina Ceramics
and its Implication in Biomedical Implants,†Journal of the European Ceramic Society,
(15):2975–2982.
Moraes, M. C. C., C. N. Elias, J. D. Filho, and L. G. Oliveira. 2004, “Mechanical Properties
of Alumina-Zirconia Composites for Ceramic Abutments,†Materials Research, 7(4):643–
Harsha, R., M. V. Kulkarni, and B. Satish Babu. 2020, “Study of Mechanical Properties of
Aluminium/Nano-Zirconia Metal Matrix Composites,†Materials Today: Proceedings,
:3100–3106.
Roseline, S., V. Paramasivam, R. Anandhakrishnan, and P. R. Lakshminarayanan. 2019,
“Numerical Evaluation of Zirconium Reinforced Aluminium Matrix Composites for
Sustainable Environment,†Annals of Operations Research, 275(2):653–667.
Zacek, S., D. Brandyberry, A. Klepacki, C. Montgomery, M. Shakiba, M. Rossol, A. Najafi,
N. Sottos, P. Geubelle, C. Przybyla, G. Jefferson, X. Zhang. 2020, “Transverse Failure of
Unidirectional Composites: Sensitivity to Interfacial Properties,†pp. 329–347.
Shakiba, M. 2021, “Detecting Transverse Cracks Initiation in Composite Laminates via
Statistical Analysis of Sensitivity Data,†Mechanics Research Communications, p. 103701.
Li, Y., L. Phung, and C. Williams. 2019, “3D Multiscale Modeling of Fracture in Metal
Matrix Composites,†Journal of Materials Research, 34(13):2285–2294.
Sepasdar, R., and M. Shakiba. 2021, “Micromechanical Study of Multiple Transverse
Cracking in Cross-Ply Fiber-Reinforced Composite Laminates,†Composite Structures,
Submitted.
Baz, A., T. Chen, and J. Ro. 2000, “Shape Control of Nitinol-Reinforced Composite Beams,â€
Composites Part B: Engineering, 31(8):631–642.
Chen, X., A. Hehr, M. J. Dapino, and P. M. Anderson. 2015, “Deformation Mechanisms in
NiTi-Al Composites Fabricated by Ultrasonic Additive Manufacturing,†Shape Memory and
Superelasticity, 1(3):294–309.
Xu, R., C. Bouby, H. Zahrouni, T. Ben Zineb, H. Hu, et al. 2018, “3D Modeling of Shape
Memory Alloy Fiber Reinforced Composites by Multiscale Finite Element Method,â€
Composite Structures, 200:408–419.
Ryu, J., B.-S. Jung, M.-S. Kim, J. Kong, M. Cho, et al. 2011, “Numerical Simulation of
Hybrid Composite Shape-Memory Alloy Wire-Embedded Structures,†Journal of Intelligent
Material Systems and Structures, 22(17):1941–1948.
Ghomshei, M. M., A. Khajepour, N. Tabandeh, and K. Behdinan. 2001, “Finite Element
Modeling of Shape Memory Alloy Composite Actuators: Theory and Experiment,†Journal
of Intelligent Material Systems and Structures,12(11):761–773.
Solomou, A.G., T. T. Machairas, and D. A. Saravanos. 2014, “A Coupled Thermomechanical
Beam Finite Element for the Simulation of Shape Memory Alloy Actuators,†Journal of
Intelligent Material Systems and Structures, 25(7):890–907.
Rajendran, M. K., M. Budnitzki, and M. Kuna. 2020, “Multi-Scale Modeling of Partially
Stabilized Zirconia with Applications to TRIP-Matrix Composites,†in Austenitic
TRIP/TWIP Steels and Steel-Zirconia Composites, vol. 298, H. Biermann and C. G. Aneziris,
eds., Cham: Springer International Publishing, pp.679–721.
Furgiuele, F. and C. Maletta. 2007, “Thermo-Mechanical Analysis of Alumina-Zirconia
Composites by a Hybrid Finite Element Method,†Mechanics of Advanced Materials and
Structures, 14(6):399–412.
Freim, J. and J. Mckittrick. 2005, “Modeling and Fabrication of Fine-Grain Alumina-
Zirconia Composites Produced from Nanocrystalline Precursors,†Journal of the American
Ceramic Society, 81:1773–1780.
Zaeem, M. A., N. Zhang, and M. Mamivand. 2019, “A Review of Computational Modeling
Techniques in Study and Design of Shape Memory Ceramics,†Computational Materials
Science, 160:120–136.
Cisse, C., W. Zaki, and T. Ben Zineb. 2016, “A Review of Constitutive Models and Modeling
Techniques for Shape Memory Alloys,†International Journal of Plasticity, 76:244–284.
Souza, A. C., E. N. Mamiya, and N. Zouain. 1998, “Three-Dimensional Model for Solids
Undergoing Stress-induced Phase Transformations,†European Journal of Mechanics -
A/Solids, 17(5):789–806.
Auricchio, F. and L. Petrini. 2004, “A Three-Dimensional Model Describing Stress-
Temperature Induced Solid Phase Transformations: Solution Algorithm and Boundary
Value Problems,†International Journal for Numerical Methods in Engineering, 61(6):807–
Auricchio, F., A. Reali, and U. Stefanelli. 2007, “A Three-Dimensional Model Describing
Stress-Induced Solid Phase Transformation with Permanent Inelasticity,†International
Journal of Plasticity, 23(2):207–226.
Auricchio, F., R. L. Taylor, and J. Lubliner. 1997, “Shape-Memory Alloys: Macromodelling
and Numerical Simulations of The Superelastic Behavior,†Computer Methods in Applied
Mechanics and Engineering, 146(3-4):281–312.
Auricchio, F. and R. L. Taylor. 1997, “Shape-Memory Alloys: Modelling and Numerical
Simulations of the Finite-Strain Superelastic Behavior,†Computer Methods in Applied
Mechanics and Engineering, 143(1-2):175–194.
SIMULIA. 2009, “Abaqus Analysis User’s Manual, Version 6.9,â€.
Lubliner, J. and F. Auricchio. 1996, “Generalized Plasticity and Shape-Memory Alloys,â€
International Journal of Solids and Structures, 33(7):991–1003.
Bondaryev, E. N. and C. M. Wayman. 1988, “Some Stress-Strain-Temperature Relationships
for Shape Memory Alloys,†Metallurgical Transactions A, 19(10):2407–2413.
Xue, L. and T. Wierzbicki. 2009, “Ductile Fracture Characterization of Aluminum Alloy
-T351 Using Damage Plasticity Theory,†International Journal of Applied Mechanics,
(02):267–304.
Azevedo, G. and D. Santos. 2000, “Synthesis and Characterization of Alumina–Zirconium
Intermetallic Composites,†Journal of Materials Synthesis and Processing, 8(2):101–107.
Becher, P. F. and M. V. Swain. 1992, “Grain-Size-Dependent Transformation Behavior in
Polycrystalline Tetragonal Zirconia,†Journal of the American Ceramic Society, 75(3):493–
Refbacks
- There are currently no refbacks.