Open Access Open Access  Restricted Access Subscription Access

Fabrication and Characterization of UHTCMCs

ANTONIO VINCI, LUCA ZOLI, PIETRO GALIZIA, LAURA SILVESTRONI, CARLOS GUTIÉRREZ, SERGIO RIVERA, DILETTA SCITI

Abstract


The materials currently used in aerospace and aviation, such as C/C and C/SiC composites, possess excellent mechanical properties but are limited to a maximum operational temperature of 1600°C (C/SiC) and poorly oxidizing environments (C/C). For more demanding applications, new materials able to withstand extreme temperatures without recession are required. In the framework of the C3harme project, a new class of materials labelled UHTCMCs, consisting of a UHTC matrix reinforced with carbon fibers, has been developed and characterized in order to overcome these challenges. Different fiber reinforcements and sintering parameters have been investigated from the microstructural point of view. The composites were fabricated via slurry infiltration of fiber, using a powder mixture of ZrB2 and SiC; the green pellets were then sintered via hot pressing. Extensive microstructural analysis was carried out on the sintered samples, showing how the sintering parameters and the choice of the fibers are crucial to obtain full densification without jeopardizing the fibers integrity and permit adequate load transfer.


DOI
10.12783/asc36/35776

Full Text:

PDF

References


M.M. Opeka, I.G. Talmy, J.A. Zaykoski, Oxidation-based materials selection for 2000°C +

hypersonic aerosurfaces: Theoretical considerations and historical experience, J. Mater. Sci. 39

(2004) 5887–5904. https://doi.org/10.1023/B:JMSC.0000041686.21788.77.

H. Hald, Operational limits for reusable space transportation systems due to physical boundaries

of C/SiC materials, Aerosp. Sci. Technol. 7 (2003) 551–559. https://doi.org/10.1016/S1270-

(03)00054-3.

R.R. Naslain, M. Pomeroy, Ceramic Matrix Composites: Matrices and Processing, Ref. Modul.

Mater. Sci. Mater. Eng. (2016). https://doi.org/10.1016/B978-0-12-803581-8.02317-1.

A. Cecere, R. Savino, C. Allouis, F. Monteverde, Heat transfer in ultra-high temperature

advanced ceramics under high enthalpy arc-jet conditions, Int. J. Heat Mass Transf. 91 (2015)

–755. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.029.

J. Han, P. Hu, X. Zhang, S. Meng, W. Han, Oxidation-resistant ZrB2-SiC composites at 2200

°C, Compos. Sci. Technol. 68 (2008) 799–806.

https://doi.org/10.1016/j.compscitech.2007.08.017.

B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Review on ultra-high temperature

boride ceramics, Prog. Mater. Sci. 111 (2020) 100651.

https://doi.org/10.1016/j.pmatsci.2020.100651.

W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou, eds., Ultra-High Temperature Ceramics:

Materials for Extreme Environment Applications, John Wiley & Sons Inc., Hoboken, New

Jersey, 2014. https://doi.org/10.1002/9781118700853.

W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium

and hafnium, J. Am. Ceram. Soc. 90 (2007) 1347–1364. https://doi.org/10.1111/j.1551-

2007.01583.x.

S. Mungiguerra, G.D. Di Martino, R. Savino, L. Zoli, L. Silvestroni, D. Sciti, Characterization

of novel ceramic composites for rocket nozzles in high-temperature harsh environments, Int. J.

Heat Mass Transf. 163 (2020) 120492.

https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2020.120492.

A. Vinci, L. Zoli, D. Sciti, C. Melandri, S. Guicciardi, Understanding the mechanical properties

of novel UHTCMCs through random forest and regression tree analysis, Mater. Des. 145 (2018)

–107. https://doi.org/10.1016/j.matdes.2018.02.061.

A. Paul, S. Venugopal, J.G.P. Binner, B. Vaidhyanathan, A.C.J. Heaton, P.M. Brown, UHTCcarbon

fibre composites: Preparation, oxyacetylene torch testing and characterisation, J. Eur.

Ceram. Soc. 33 (2013) 423–432. https://doi.org/10.1016/j.jeurceramsoc.2012.08.018.

J. Binner, M. Porter, B. Baker, J. Zou, V. Venkatachalam, V.R. Diaz, A. D’Angio, P.

Ramanujam, T. Zhang, T.S.R.C. Murthy, Selection, processing, properties and applications of

ultra-high temperature ceramic matrix composites, UHTCMCs–a review, Int. Mater. Rev. 65

(2020) 389–444. https://doi.org/10.1080/09506608.2019.1652006.

R. Savino, L. Criscuolo, G.D. Di Martino, S. Mungiguerra, Aero-thermo-chemical

characterization of ultra-high-temperature ceramics for aerospace applications, J. Eur. Ceram.

Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.043.

S. Mungiguerra, G.D. Di Martino, A. Cecere, R. Savino, L. Silvestroni, A. Vinci, L. Zoli, D.

Sciti, Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites,

Corros. Sci. 149 (2019) 18–28. https://doi.org/https://doi.org/10.1016/j.corsci.2018.12.039.

L. Zoli, A. Vinci, P. Galizia, C.F. Gutièrrez-Gonzalez, S. Rivera, D. Sciti, Is spark plasma

sintering suitable for the densification of continuous carbon fibre - UHTCMCs?, J. Eur. Ceram.

Soc. 40 (2020) 2597–2603. https://doi.org/10.1016/j.jeurceramsoc.2019.12.004.

D. Sciti, P. Galizia, T. Reimer, A. Schoberth, C.F. Gutiérrez-Gonzalez, L. Silvestroni, A. Vinci,

L. Zoli, Properties of large scale ultra-high temperature ceramic matrix composites made by

filament winding and spark plasma sintering, Compos. Part B Eng. 216 (2021).

https://doi.org/10.1016/j.compositesb.2021.108839.

A. Vinci, L. Zoli, P. Galizia, D. Sciti, Influence of Y2O3 addition on the mechanical and

oxidation behaviour of carbon fibre reinforced ZrB2/SiC composites, J. Eur. Ceram. Soc.

(2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.043.


Refbacks

  • There are currently no refbacks.