

Modeling and Calibration of Uncertainty in Material Properties of Additively Manufactured Composites
Abstract
10.12783/asc36/35758
References
L. Wu, V.-D. Nguyen, L. Adam, and L. Noels, “An inverse micro-mechanical
analysis toward the stochastic homogenization of nonlinear random composites,â€
Computer Methods in Applied Mechanics and Engineering, vol. 348,
pp. 97 –138, 2019, ISSN: 0045-7825. DOI: 10.1016/j.cma.2019.01.
L. Wu, C. N. Chung, Z. Major, L. Adam, and L. Noels, “From SEM images
to elastic responses: A stochastic multiscale analysis of UD fiber reinforced
composites,†Composite Structures, vol. 189, pp. 206–227, 2018, ISSN: 0263-
DOI: 10.1016/j.compstruct.2018.01.051.
L. Wu, L. Adam, and L. Noels, “A micromechanics-based inverse study for
stochastic order reduction of elastic UD fiber reinforced composites analyses,â€
International Journal for Numerical Methods in Engineering, vol. 115, no. 12,
pp. 1430–1456, 2018, ISSN: 1097-0207. DOI: 10.1002/nme.5903.
B. Staber, J. Guilleminot, C. Soize, J. Michopoulos, and A. Iliopoulos, “Stochastic
modeling and identification of a hyperelastic constitutive model for laminated
composites,†Computer Methods in Applied Mechanics and Engineering,
vol. 347, pp. 425 –444, 2019, ISSN: 0045-7825. DOI: 10.1016/j.cma.
12.036.
G. J. Yun, L. Zhao, and E. Iarve, “Probabilistic mesh-independent discrete
damage analyses of laminate composites,†Composite Structures, vol. 133,
pp. 22–30, 2015, ISSN: 0263-8223. DOI: 10 . 1016 / j . compstruct .
07.083.
A. Vanaerschot, B. N. Cox, S. V. Lomov, and D. Vandepitte, “Stochastic multiscale
modelling of textile composites based on internal geometry variability,â€
Computers & Structures, vol. 122, pp. 55 –64, 2013, Computational Fluid and
Solid Mechanics 2013, ISSN: 0045-7949. DOI: https://doi.org/10.
/j.compstruc.2012.10.026. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0045794912002647.
D. Tal and J. Fish, “Generating a statistically equivalent representative volume
element with discrete defects,†Composite Structures, vol. 153, pp. 791
–803, 2016, ISSN: 0263-8223. DOI: https : / / doi . org / 10 . 1016 /
j.compstruct.2016.06.077. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0263822316310790.
A. Gupta, A. Cecen, S. Goyal, A. K. Singh, and S. R. Kalidindi, “Structure–
property linkages using a data science approach: Application to a nonmetallic
inclusion/steel composite system,†Acta Materialia, vol. 91, pp. 239
–254, 2015, ISSN: 1359-6454. DOI: https : / / doi . org / 10 . 1016 /
j . actamat . 2015 . 02 . 045. [Online]. Available: http : / / www .
sciencedirect.com/science/article/pii/S1359645415001603.
P. Meißner, H. Watschke, J. Winter, and T. Vietor, “Artificial neural networksbased
material parameter identification for numerical simulations of additively
manufactured parts by material extrusion,†Polymers, vol. 12, no. 12, 2020,
ISSN: 2073-4360. DOI: 10.3390/polym12122949.
F. Abbassi, T. Belhadj, S. Mistou, and A. Zghal, “Parameter identification of
a mechanical ductile damage using artificial neural networks in sheet metal
forming,†Materials & Design, vol. 45, pp. 605–615, 2013, ISSN: 0261-3069.
DOI: 10.1016/j.matdes.2012.09.032.
A. Chamekh, H. Bel Hadj Salah, and R. Hambli, “Inverse technique identification
of material parameters using finite element and neural network computation,â€
The International Journal of Advanced Manufacturing Technology,
vol. 44, no. 1, p. 173, 2008. DOI: 10.1007/s00170-008-1809-6.
M. Nassef, C. Schenck, and B. Kuhfuss, “Simulation-based parameter identification
of a reduced model using neural networks,†in 2011 9th IEEE International
Conference on Control and Automation (ICCA), 2011, pp. 974–978.
DOI: 10.1109/ICCA.2011.6138002.
T. L¨ahivaara, L. K¨arkk¨ainen, J. M. J. Huttunen, and J. S. Hesthaven, “Deep
convolutional neural networks for estimating porous material parameters with
ultrasound tomography,†The Journal of the Acoustical Society of America,
vol. 143, no. 2, pp. 1148–1158, 2018. DOI: 10.1121/1.5024341.
E. Pitz, S. Rooney, and K. Pochiraju, “Stochastic modelling of additively manufactured
structures using a neural network for identification of random field
parameters,†presented at the ASC 35th Technical (Virtual) Conference, Sep.
DOI: 10.12783/asc35/34974.
R. I. Borja, “J2 plasticity,†in Plasticity: Modeling & Computation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 31–58, ISBN: 978-3-642-
-6. DOI: 10.1007/978-3-642-38547-6_3. [Online]. Available:
https://doi.org/10.1007/978-3-642-38547-6_3.
A. Der Kiureghian, T. Haukaas, and K. Fujimura, “Structural reliability software
at the university of california, berkeley,†Structural Safety, vol. 28, no. 1,
pp. 44 –67, 2006, Structural Reliability Software, ISSN: 0167-4730. DOI: https:
//doi.org/10.1016/j.strusafe.2005.03.002. [Online]. Available:
http://www.sciencedirect.com/science/article/
pii/S0167473005000160.
M. Voˇrechovsk´y, “Simulation of simply cross correlated random fields by series
expansion methods,†Structural Safety, vol. 30, no. 4, pp. 337–363, 2008,
ISSN: 0167-4730. DOI: 10.1016/j.strusafe.2007.05.002.
R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach.
Berlin, Heidelberg: Springer-Verlag, 1991, ISBN: 0387974563. DOI:
1007/978-1-4612-3094-6.
T. Zhao and Y. Wang, “Simulation of cross-correlated random field samples
from sparse measurements using bayesian compressive sensing,†Mechanical
Systems and Signal Processing, vol. 112, pp. 384–400, 2018, ISSN: 0888-3270.
DOI: 10.1016/j.ymssp.2018.04.042.
K. Fukunaga and W. Koontz, “Representation of random processes using the
finite karhunen-lo`eve expansion,†Information and Control, vol. 16, no. 1,
pp. 85 –101, 1970, ISSN: 0019-9958. DOI: https : / / doi . org / 10 .
/S0019-9958(70)80043-2. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0019995870800432.
A. Klenke, Probability Theory, A Comprehensive Course. Springer, London,
, ISBN: 978-1-4471-5361-0. DOI: 10.1007/978-1-4471-5361-0.
M. Reis, S. Diebels, and A. Jung, “Noise reduction for dic measurements,â€
PAMM, vol. 19, no. 1, 2019. DOI: 10.1002/pamm.201900077.
S. N. Olufsen, M. E. Andersen, and E. Fagerholt, “μDic: An open-source
toolkit for digital image correlation,†SoftwareX, vol. 11, p. 100 391, 2020,
ISSN: 2352-7110. DOI: 10.1016/j.softx.2019.100391.
P. Alfeld, “A trivariate clough—tocher scheme for tetrahedral data,†Computer
Aided Geometric Design, vol. 1, no. 2, pp. 169–181, 1984, ISSN: 0167-8396.
DOI: 10.1016/0167-8396(84)90029-3.
P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python,†Nature Methods, vol. 17, pp. 261–272, 2020. DOI: 10.1038/
s41592-019-0686-2.
J.-J. Orteu, D. Garcia, L. Robert, and F. Bugarin, “A speckle texture image generator,â€
presented at the Speckle06: Speckles, From Grains to Flowers, Nimes,
France, 2006. DOI: 10.1117/12.695280.
A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,†in Advances in Neural Information Processing Systems 32, H.
Wallach et al., Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online].
Available: http://papers.neurips.cc/paper/9015-pytorchan-
imperative-style-high-performance-deep-learninglibrary.
pdf.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,†Commun. ACM, vol. 60, no. 6, 84–90,
May 2017, ISSN: 0001-0782. DOI: 10.1145/3065386.
H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural architecture
search via parameter sharing,†CoRR, vol. abs/1802.03268, 2018.
arXiv: 1802.03268.
B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,â€
CoRR, vol. abs/1611.01578, 2016. arXiv: 1611.01578.
B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,†CoRR, vol. abs/1707.07012, 2017.
arXiv: 1707.07012.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,†Neural Comput.,
vol. 9, no. 8, 1735–1780, Nov. 1997, ISSN: 0899-7667. DOI: 10.1162/
neco.1997.9.8.1735.
I. Sobol, “On the distribution of points in a cube and the approximate evaluation
of integrals,†USSR Computational Mathematics and Mathematical Physics,
vol. 7, no. 4, pp. 86 –112, 1967, ISSN: 0041-5553. DOI: 10.1016/0041-
(67)90144-9.
P. Bratley and B. L. Fox, “Algorithm 659: Implementing sobol’s quasirandom
sequence generator,†ACM Trans. Math. Softw., vol. 14, no. 1, pp. 88–100, Mar.
, ISSN: 0098-3500. DOI: 10.1145/42288.214372.
“Nerual network intelligence.†(Jun. 2021), [Online]. Available: https://
nni.readthedocs.io/en/stable/index.html.
Q. Zhang et al., “Retiarii: A deep learning exploratory-training framework,†in
th fUSENIXg Symposium on Operating Systems Design and Implementation
(fOSDIg 20), 2020, pp. 919–936.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,†in
rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio
and Y. LeCun, Eds., 2015. [Online]. Available: http : / / arxiv . org /
abs/1412.6980.
Astm d638-14, standard test method for tensile properties of plastics, Standard,
ASTM International, West Conshohocken, PA, 2014. DOI: 10.1520/
D0638-14. [Online]. Available: www.astm.org.
M. Singh and R. Singh, “Twin screw extrusion for recycling of thermoplastics,â€
in Reference Module in Materials Science and Materials Engineering,
Elsevier, 2020, ISBN: 978-0-12-803581-8. DOI: 10.1016/B978-0-12-
-1.00013-4.
Refbacks
- There are currently no refbacks.