Thermal Ablation Modelling of C/SiC for Hypersonic Applications
Abstract
10.12783/asc36/35744
Full Text:
PDFReferences
Van Wie, D. M., Drewry Jr., D. G., King, D. E., & Hudson, C. M. (2004). The hypersonic environment: Required operating conditions and design challenges. Journal of Materials Science, 39(19), 5915–5924. https://doi.org/10.1023/b:jmsc.0000041688.68135.8b
Marshall, D., Cox, B., Kroll, P., Hilmas, G., Fahrenholtz, W., Raj, R., & Zok, F. (2014). National Hypersonic Science Center for Materials and Structures. TELEDYNE SCIENTIFIC COMPANY THOUSAND OAKS CA.
Wie, David & D'Alessio, Stephen & White, Michael. (2005). Hypersonic airbreathing propulsion. Johns Hopkins Apl Technical Digest. 26. pp. 430-436.
Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E., & Zhou, Y. (2014). In Ultra-high temperature ceramics: materials for extreme environment applications (pp. 6–32). essay, Wiley, ACers.
Bansal, N. P., & Lamon, J. (2015). In Ceramic matrix composites: materials, modeling and technology (pp. 236–272). essay, Wiley.
Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, & Salem JA. Evaluation of ultrahigh temperature ceramics for aeropropulsion use. J Eur Ceram Soc 2002;22:2757-67.
Yan, C., Liu, R., Cao, Y., Zhang, C., & Zhang, D. (2014). Ablation behavior and mechanism of C/ZrC, C/ZrC–SiC and C/SiC composites fabricated by polymer infiltration and pyrolysis process. Corrosion Science, 86, 131–141. https://doi.org/10.1016/j.corsci.2014.05.005
Blanco, C., Casal, E., Granda, M., & Menéndez, R. (2003). Influence of fibre–matrix interface on the fracture behaviour of carbon-carbon composites. Journal of the European Ceramic Society, 23(15), 2857–2866. https://doi.org/10.1016/s0955-2219(03)00298-x
Luo, R., Liu, T., Li, J., Zhang, H., Chen, Z., & Tian, G. (2004). Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon, 42(14), 2887–2895. https://doi.org/10.1016/j.carbon.2004.06.024
Han, J. C., He, X. D., Du, S. Y. (1995). Oxidation and ablation of 3D carbon-carbon composite at up to 3000 °C. Carbon, 33(4), 473–478. https://doi.org/10.1016/0008-6223(94)00172-v
Wen, G., Sui, S. H., Song, L., Wang, X. Y., & Xia, L. (2010). Formation of ZrC ablation protective coatings on carbon material by tungsten inert gas cladding technique. Corrosion Science, 52(9), 3018–3022. https://doi.org/10.1016/j.corsci.2010.05.015
Zhang, Q., He, J., Liu, W., & Zhong, M. (2003). Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding. Surface and Coatings Technology, 162(2-3), 140–146. https://doi.org/10.1016/s0257-8972(02)00697-7
Park, J. H., Jung, C. H., Kim, D. J., & Park, J. Y. (2008). Temperature dependency of the LPCVD growth of ZrC with the ZrCl4–CH4–H2 system. Surface and Coatings Technology, 203(3), 324–328. https://doi.org/10.1016/j.surfcoat.2008.09.009
ClaverÃa, I., Lostalé, A., Fernández, Ã., Castell, P., Elduque, D., Mendoza, G., & Zubizarreta, C. (2019). Enhancement of Tribological Behavior of Rolling Bearings by Applying a Multilayer ZrN/ZrCN Coating. Coatings, 9(7), 434. https://doi.org/10.3390/coatings9070434
Zhang, Y., Hu, H., Zhang, P., Hu, Z., Li, H., & Zhang, L. (2016). SiC/ZrB2–SiC–ZrC multilayer coating for carbon/carbon composites against ablation. Surface and Coatings Technology, 300, 1–9. https://doi.org/10.1016/j.surfcoat.2016.05.028
Milos, F., Chen, Y.-K., Milos, F., & Chen, Y.-K. (1997). Comprehensive model for multicomponent ablation thermochemistry. 35th Aerospace Sciences Meeting and Exhibit, 91–0141. https://doi.org/10.2514/6.1997-141
E.J. Opila and R. Hann, “Paralinear Oxidation of CVD SiC in Water Vapor,†Journal of American Ceramic Society, vol. 80, no. 1, pp. 197-205, 1997.
Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, B., & Talmy, I. (2007). UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. The Electrochemical Society Interface, 16(4), pp. 30–36. https://doi.org/10.1149/2.f04074if
Mullenix, N., Povitsky, A., & Gaitonde, D. (2008). Modeling of Local Intense Ablation in Hypersonic Flight. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. https://doi.org/10.2514/6.2008-2555
Frei, W. (2016, March 30). Modeling Thermal Ablation for Material Removal.
Guo, J., Huang, H., & Xu, X. (2020). Protective effect of pyrolysis gases combustion against surface ablation under different Mach numbers. Acta Astronautica, 166, 209–217. https://doi.org/10.1016/j.actaastro.2019.10.032
Grigoriev, O. N., Galanov, B. A., Kotenko, V. A., Ivanov, S. M., Koroteev, A. V., & Brodnikovsky, N. P. (2010). Mechanical properties of ZrB2–SiC(ZrSi2) ceramics. Journal of the European Ceramic Society, 30(11), 2173–2181. https://doi.org/10.1016/j.jeurceramsoc.2010.03.022
Yan, C., Liu, R., Cao, Y., Zhang, C., & Zhang, D. (2014). Ablation behavior and mechanism of C/ZrC, C/ZrC–SiC and C/SiC composites fabricated by polymer infiltration and pyrolysis process. Corrosion Science, 86, 131–141. https://doi.org/10.1016/j.corsci.2014.05.005
Jin, X., Fan, X., Lu, C., & Wang, T. (2018). Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. Journal of the European Ceramic Society, 38(1), pp. 1–28. https://doi.org/10.1016/j.jeurceramsoc.2017.08.013
Tang, S., Deng, J., Wang, S., Liu, W., & Yang, K. (2007). Ablation behaviors of ultra-high temperature ceramic composites. Materials Science and Engineering: A, 465(1-2), pp. 1–7. https://doi.org/10.1016/j.msea.2007.02.040
Onay, O. K., & Eyi, S. (2020). Ablation Analyses of Optimized Nose Tips for Hypersonic Vehicles. Journal of Thermophysics and Heat Transfer, 34(1), 78–89. https://doi.org/10.2514/1.t5644
Abdul-Aziz, A. (2018). Durability Modeling Review of Thermal- and Environmental-Barrier-Coated Fiber-Reinforced Ceramic Matrix Composites Part I. Materials, 11(7), pp. 1251–1267. https://doi.org/10.3390/ma11071251
Fang, G., Ren, J., Shi, J., Gao, X., & Song, Y. (2020). Thermal Stress Analysis of Environmental Barrier Coatings Considering Interfacial Roughness. Coatings, 10(10), 947. https://doi.org/10.3390/coatings10100947
Refbacks
- There are currently no refbacks.