Open Access Open Access  Restricted Access Subscription or Fee Access

Embedded Sensing of Damage in Composite Materials

ASHA HALL, MULUGETA HAILE, MICHAEL COATNEY, NATASHA BRADLEY, JIN HYEONG YOO

Abstract


The integrity of composite structures gradually degrades due to the onset of damage such as matrix cracking, fiber/matrix debonding, and delamination. Over the last two decades, great strides have been made in structural health monitoring (SHM) community using various sensing techniques such as acoustic emission, eddy current, strain gages, etc., to diagnose damage in aerospace, mechanical and civil infrastructures. Embedded sensing offers the prospects of providing for real-time, in-service monitoring of damage were weight savings is a major factor in Aerospace Industry. In this present work, magnetostrictive particles such as Terfenol-D were embedded in a composite structure, along with multiple SHM techniques, to capture the damage in an IM7-carbon fiber reinforced polymer composite system undergoing fatigue loading. As the internal stress state increases, the change in the magnetization flux intensity was captured using a non-contact magnetic field sensor. A damage diagnosis system was established along with an acoustic emissions technique to further validate the damage captured by the embedded system. The goal of this project is to identify the change in the mechanical and magnetic property within a composite material during the evolution of damage. Several characterization techniques will be used to determine interfacial fiber-matrix interactions which will provide for a more comprehensive understanding of the composite interfaces.·


DOI
10.12783/shm2017/14009

Full Text:

PDF

Refbacks

  • There are currently no refbacks.