Open Access Open Access  Restricted Access Subscription or Fee Access

Novel Detection and Quantification of Sensitivity of Impact-Induced Structural Dynamics: Potential Enhanced Damage Detection by Wave Chaos Information

IOANNIS T. GEORGIOU

Abstract


In an effort to develop advanced diagnostics (damage detection and system identification) for structures of complicated geometry, we have focused on an important source of uncertainty in experimental structural dynamics. Wave chaos can occur in linear structures because of the phenomenon of ray splitting, a potential source of uncertainty. The investigated sensitivity is on the initial local velocities induced by nondestructive interrogating impacts with a modal hammer. We have detected and computed spatial distributions of regular and irregular sensitivity of transient dynamics developed in the domains of two prototypical structural systems. The novelty of the present work resides in the use of the proper orthogonal decomposition (POD), also known as principal component analysis (PCA), transform to fuse raw databases (data sets) in the form of (1) raw collocated acceleration signals (CAS) and (2) raw distributed acceleration signals (DAS) of the transient response. The extracted, after the data fusion, POD modes are used as a basis for analytics aimed at detecting and quantifying sensitivity hidden in the raw data sets. We claim that the irregular sensitivity of the transient dynamic is perhaps the shadow of chaotic scattering of elastic waves by the damaged regions. The physics phenomenon of chaotic wave and particle scattering occurs in diverse physical systems ranging from quantum mechanics (cavities for instance) to continuum small scale elastic systems


DOI
10.12783/shm2017/13998

Full Text:

PDF

Refbacks

  • There are currently no refbacks.