The Anti-periodic Solutions Set for a Class of Nonlinear Evolution Inclusions in R^N

Jun-yan WANG1, Cui-ying LI2 and Yue KANG3

1Department of Mathematics, College of Humanities and Information Changchun University of Technology, Changchun, 130122, P.R. China

2Center of Educational Reform and Teaching Quality Evaluation, Bohai University, Jinzhou, 121012, P.R. China

3Shengyang Traditional Chinese Medical School, Shengyang, 110300, P.R. China

*Corresponding author

Keywords: Anti-periodic solution, Evolution inclusions, Compact $R_δ$.

Abstract. We study the structural properties of the anti-periodic solutions set for a class of nonlinear evolution inclusions in $R_δ$. When the right-hand side term is convex-valued, we obtain that the anti-periodic solutions set is a compact $R_δ$ set.

Mathematics Subject Classification. 34B15, 34B16, 37J40

Introduction

In this paper, we examine the structural properties of the anti-periodic solution set for a class of nonlinear evolution inclusions based on [1,2] in $R_δ$. The anti-periodic problems of evolution inclusions were investigated by Okochi [3], Aizicovici-McKibben-Reich [4], Franco-Nieto-O'Regan [5], Chen-Cho-O'Regan [6], Park-Ha [7], and Liu [8] and the references therein. In the past the topological structure of the solution set of differential inclusions in $R_δ$ has been investigated by Himmelberg-Van Vleck [9] and DeBlasi-Myjak [10]. Himmelberg and Van Vleck considered the topological structure of the solution set to the following differential inclusions

$$\dot{x}(t) \in F(t,x(t)),$$

and obtained that the solution set was an $R_δ$-set. For the Cauchy problems the topological structure of the solution set of evolution inclusions was examined primarily by Papageorgiou-Shahzad [11] and Papageorgiou-Yannakakis [12] in a Banach space. For the optimization of this subject, we refer the reader to the work of [21]. However, none of these works addressed the topological structure of the anti-periodic solution set studied in this paper. In this paper we prove that the solution set of nonlinear time-dependent evolution inclusions with a convex-valued orientor field is compact $R_δ$ in $C(I,R^N)$.

Preliminaries

We still use the notation introduced in [1,2]. Let (Ω,Σ) be a measurable space and X a separable Banach space. Throughout this note, we use the following notation:

$$P_{f(0)}(X) = \{ A \subseteq X : nonempty, closed, (and convex) \}.$$ A multifunction $F: \Omega \to P_f(X)$ is said to be measurable if, for all $x \in X$, the $R_δ$-valued function $\omega \to d(x,F(\omega))$ is measurable. Let Y,Z be Hausdorff topological spaces and $G:Y \to 2^Z / \{ \emptyset \}$. We
say that $G(\cdot)$ is upper semicontinuous (USC) (resp. lower semicontinuous (LSC)) if, for all $U \subseteq Z$ nonempty, open, $G^+ (U) = \{ y \in Y : (G(y) \subseteq U) \}$ (resp. $G^- (U) = \{ y \in Y : (G(y) \cap U \neq \emptyset) \}$) is open in Y.

On $P_f (X)$ we can define a generalized metric, known in the literature as the Hausdorff metric, by

$$h(A, B) = \max \{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \}.$$

The metric space $(P_f (X), h)$ is complete and a multifunction $G : X \rightarrow P_f (X)$ is said to be Hausdorff continuous (h-continuous) if it is continuous from X into $(P_f (X), h)$.

Proposition 2.1 If $F : I \times H \rightarrow P_{S^+} (V^*)$ is measurable in t, h-USC in x, and $|F(t, x)| \leq \varphi(t)$ a.e. with $\varphi(t) \in L^p (I)$, then there exists a sequence of multifunctions $F_n : I \times H \rightarrow P_{S^+} (V^*)$, $n \geq 1$, such that for every $x \in H$ there exist $\mu(t) > 0$ and $\epsilon > 0$ such that if $x_1, x_2 \in B_\varepsilon (x) = \{ y \in H : \| x - y \| \leq \varepsilon \}$, then

$$h(F_n (t, x_1), F_n (t, x_2)) \leq \mu(t) \varphi(t) \| x_1 - x_2 \| \text{ a.e. (i.e., } F_n (t, x) \text{ is locally } h\text{-Lipschitz),}$$

$F(t, x) \subseteq \cdots \subseteq F_n (t, x) \subseteq \cdots \subseteq F_{n+1} (t, x) \cdots$, $F_n (t, x) \leq \varphi(t)$ a.e. $n \geq 1$, $F_n (t, x) \rightarrow F(t, x)$ as $n \rightarrow 1$ for every $(t, x) \in I \times H$, and there exists $u_n : I \times H \rightarrow H$, measurable in t, locally Lipschitz in x (as $F_n (t, x)$) and $u_n (t, x) \in F_n (t, x)$ for every $(t, x) \in I \times H$. Moreover, if $F(t, \cdot)$ is h-continuous, then $t \rightarrow F_n (t, x)$ is measurable (hence $t \rightarrow F_n (t, x)$ is measurable too; see [14]).

Main Results

Let $I = [0, T]$, consider the following anti-periodic problems of evolution inclusions

\begin{align*}
\dot{x} + A(t, x) &\in F(t, x), \text{ a.e. } I \\
x(0) &= -x(T).
\end{align*}

We denote the solution set of (1) by S, and will show that S is an R_δ set in $C(I, R^N)$. To this end we need the following hypotheses on the data of (1).

(H1) $A : I \times R^N \rightarrow R^N$ is an operator such that (i) $t \rightarrow A(t, x)$ is measurable; (ii) for each $t \in I$, the operator $A(t, \cdot) : R^N \rightarrow R^N$ is uniformly monotone and hemicontinuous, that is, there exists a constant $p > 0$ such that

$$\langle A(t, x_1) - A(t, x_2), x_1 - x_2 \rangle \geq p \| x_1 - x_2 \|$$

for all $x_1, x_2 \in R^N$, and the map $s \mapsto \langle A(t, x + sz), y \rangle$ is continuous on $[0, 1]$ for all $x, y, z \in R^N$.

For every $f \in L^2 (I, R^N)$, the following nonlinear evolution equation

\begin{align*}
\dot{x} + A(t, x) &= f(t), \text{ a.e. } I \\
x(0) &= -x(T)
\end{align*}

has a unique solution $x = P (f) \in C(I, R^N)$, where P is defined as the solution map of problem (2).

Proposition 3.1 If hypotheses (H1) hold, then $P : L^2 (I, R^N) \rightarrow C(I, R^N)$ is sequentially continuous.

Proof. As in [2], let

$$W = \{ v \in L^2 (I, R^N) : \| v \| \leq \psi(t) \text{ a.e. on } I \},$$

where
with $\psi(t) \in L^2(I)$, then $K = \{P(v) : v \in W\} \subseteq W^{1,2}(I, R^N)$ is compact convex subset in $C(I, R^N)$. Let $\{f_n\}_{n \geq 1} \subseteq W$. From the definition of W, so W is uniformly bounded in $L^2(I, R^N)$. By Dunford-Pettis theorem, passing to a subsequence if necessary, we may assume that $f_n \to f$ weakly in $L^2(I, R^N)$ for some $f \in W$. Set $x_n(t) = P(f_n)$ and $x(t) = P(f)$. From a prior estimation of solution in [1], we have $x_n(t) \to x(t)$ in $L^2(I, R^N)$, so $x_n(0) \to x(0)$ as $n \to \infty$. Therefore, we have

$$
\|x_n(t) - x(t)\| \leq 2 \int_0^T (f_n(s) - f(s), x_n(s) - x(s)) ds + \|x_n(0) - x(0)\|
$$

$$
\leq 4 \int_0^T \|\psi\|_{C^0} x_n - x\|dt + \|x_n(0) - x(0)\|
$$

$$
\leq 4 \|\psi\|_{C^0} \|x_n - x\|_2 + \|x_n(0) - x(0)\|
$$

$$
\to 0 \text{ as } n \to \infty.
$$

We see that

$$
\max_{t \in I} \|x_n(t) - x(t)\| \to 0 \text{ as } n \to \infty.
$$

So, $x_n(t) \to x(t)$ in $C(I, R^N)$, i.e. $P: L^2(I, R^N) \to C(I, R^N)$ is sequentially continuous.

To obtain such a structural result for the solution set of (0.1) we need the following hypotheses on $F(t, x)$:

(H2) $F: I \times R^N \to P_{R^N}(R^N)$ is a multifunction such that (i) $(t, x) \to F(t, x)$ is graph measurable; (ii) for almost all $t \in I$, $x \to F(t, x)$ has a closed graph; (iii) there exists an nonnegative function $b(\cdot) \in L^1(I)$ and a constant $C > 0$ such that

$$
|F(t, x)| = \sup\{\|f\| : f \in F(t, x)\} \leq b(t) + C\|x\|^{\alpha}, \forall x \in R^N \text{ a.e. } I
$$

where $0 \leq \alpha \leq 1$.

Theorem 3.1 If hypotheses (H1) and (H2) hold, then S is an R set in $C(I, R^N)$.

Proof. From the a prior estimation conducted in the proof of Theorem 3.2 in [1], we know that without loss of generality, we may assume that for almost all $t \in I$, all $x \in R^N$ and all $v \in F(t, x)$, we have $\|v\| \leq \psi(t)$ with $\psi \in L^1(I)$. Apply Proposition 2.1 to generate a sequence of multifunctions $F_n: I \times R^N \to P_{R^N}(R^N)$. For every $n \geq 1$, consider the following anti-periodic problem of evolution inclusion:

$$
x + A(t, x) \in F_n(t, x), \text{ a.e. } I
$$

$$
x(0) = -x(T).
$$

From Theorem 3.3 of [1], we obtain that problem (4) has a nonempty solution set

$$
S_n \subseteq W^{1,2}(I, R^N) \cap C(I, R^N)
$$

which is compact in $C(I, R^N)$. The rest part of the proof is divided into two steps.

Step 1. We will claim that this set S_n is contractible. Let $f_n(t, x)$ be the locally Lipschitz with respect to $x \in R^N$, measurable selector of $F_n(t, x)$ postulated by Proposition 2.1. Let $\gamma = [0, 1]$, for each $\rho \in \gamma$, let u_{ρ} denote the unique solution of the following equation

$$
\dot{x} + A(t, x) \in f_n(t, x), \text{ a.e. } I
$$

$$
x(0) = -x(T).
$$
\[\dot{u}(t) + A(t,u(t)) = f_n(t,u), \quad \text{a.e. on } [\rho T, T], \]
\[u(\rho T) = -x(\rho T). \]
for given \(x \in S_n \). Then we can define a function \(\eta(\rho, x) : \gamma \times S_n \to S_n \) by

\[\eta(\rho, x)(t) = \begin{cases} x(t) & \text{for } t \in [0, \rho T], \\ u(\rho, x)(t) & \text{for } t \in [\rho T, T]. \end{cases} \]

Evidently, for every \(x \in S_n \), if \(\rho = 0 \), then \(\eta(0, x)(0) = x(0) \), and if \(\rho = 1 \), then \(\eta(1, x)(t) = x(t) \). If we can show that \(\eta(\rho, x) \) is continuous in \(C(I, R^N) \), then we will show that \(S_n \) is contractible in \(C(I, R^N) \). To this end let \((\rho_m, x_m) \to (\rho, x) \) in \(\gamma \times S_n \). We consider one cases, the other is similar. Without loss of generality, let \(\rho_m \geq \rho \) for every \(m \geq 1 \). Set \(v_m(t) = \eta(\rho_m, x_m)(t) \), for each \(t \in I \).

Evidently \(v_m(t) \in S_n \), for every \(m \geq 1 \). From the compactness of \(S_n \) in \(C(I, R^N) \), and so by passing to a subsequence if necessary, we may assume that \(v_m \to v \) in \(C(I, R^N) \) as \(m \to \infty \). Clearly \(v(t) = x(t) \) for \(0 \leq t \leq \rho T \). Also let \(z \in W^{1,2}(I, R^N) \) be the unique solution of

\[\dot{z} + A(t, z) = f_n(t, v), \quad \text{a.e. on } [\rho T, T], \]
\[z(\rho T) = -v(\rho T). \]

Let \(M \geq 1 \), then for \(m \geq M \) large enough \(v_m(t) \) satisfies \(\dot{v}_m + A(t, v_m) = f_n(t, v_m) \) a.e. on \([\rho_M T, T]\). Because of the uniformly boundness of \(f_n \), by passing to a subsequence if necessary we may assume that \(\dot{v}_m \to \dot{v} \) in \(W^{1,2}(I, L^2) \). Then \(z(\rho T) \to z(\rho T) \) in \(R^N \) as \(M \to \infty \), in the limit we have \(z(t) = v(t) \) for every \(t \in [\rho T, T] \). From (7), we have

\[\dot{z} + A(t, z(t)) = f_n(t, z(t)), \quad \text{a.e. on } \rho T \leq t \leq T, \]
\[z(\rho T) = -x(\rho T). \]

hence \(v = \eta(\rho, x) \). Therefore, \(\eta(\rho_m, x_m) \to \eta(\rho, x) \) in \(C(I, R^N) \).

In general we can always find a subsequence of \(\{\rho_m\}_{m \geq 1} \) satisfying \(\rho_m \leq \rho \) or \(\rho_m \geq \rho \). So we have proved the continuity of \(\eta(\rho, x) \). Therefore, for every \(n \geq 1 \), \(S_n \subseteq C(I, R^N) \) is compact and contractible.

Step 2. We will claim that \(S = \bigcap_{n \geq 1} S_n \). Clearly, \(S \subseteq \bigcap_{n \geq 1} S_n \). Let \(x \in \bigcap_{n \geq 1} S_n \). Then by definition \(x = P(f_n) \), \(f_n \in S^2_{F(x_n)} \) for some \(n \geq 1 \), where \(S^2_{F(x)} \) denotes the set of all \(L^2(I, R^N) \)-selection of \(F_x \). Because of the uniformly boundness of \(f_n \), by passing to a subsequence if necessary we may assume that \(f_n \to f \) weakly in \(L^2(I, R^N) \). Then \(f \in S^2_{F(x_n)} \) (see Theorem 3.2 of [1]). So \(x = P(f) \) with
\[f \in S^2_{f(x,t)} \] from which we conclude that \(\bigcap_{n=1} S_n \subseteq S \), i.e. \(\bigcap_{n=1} S_n = S \). Finally, Hyman's result [12] implies that \(S \) is a compact \(R_\delta \) set in \(C(I, \mathbb{R}^N) \).

We know the contractible set is connected, so an immediate consequence of Theorem 3.1 is the following result for the multivalued problem (1).

Remark 3.1 If hypotheses (H1)-(H2) hold, then for every \(t \in I \), \(S(t) = \{ x(t) | x \in S \} \) (the reachable set at time \(t \in I \)) is compact and connected in \(\mathbb{R}^N \).

Acknowledgments

This work is partially supported by National Natural Science Foundation of China (No. 11401042).

References

