Analysis of the Impact of Economic Growth on Urban Land Expansion in Sichuan Province

Zhang Zhan

(College of Management, Sichuan Agricultural University, Chengdu, Sichuan 611130)

Keywords: Economic Growth; Economic Structure; Urban Land Expansion; Impact Analysis; Kuznets Curve

Abstract: Based on the panel data of the urban land expansion and economic growth of 18 prefecture-level cities in Sichuan province from 2000 to 2014, this paper analyzes the relationship between the regional economic development and urban land expansion by constructing the econometric model of the area of the built-up area, the economic aggregate and the economic structure variables. The results show that: (1) The evolution law of urban land expansion and economic growth in Sichuan province "N" three times, which basically conforms to the characteristics of Kuznets curve; (2) The change of economic structure will affect the urban land expansion and the area of built-up area - per capita income curve. The increase of the proportion of secondary industry, fiscal expenditure and fiscal revenue will reduce the demand for urban land, so that the area of built-up area - per capita income curve flattens out. On the contrary, the increase in the level of foreign trade, the increase of input-output ratio and the decline of the proportion of the tertiary industry will increase the demand for urban land, making the built-up area - per capita income curve steeper.

1. Introduction

Since the reform and opening up, China's real gross domestic product (GDP) has been growing at an average annual rate of nearly 10%. Despite being under the background of the global financial crisis in 2008, growth is still as high as 9.7%. However, the long-term development of China's economy and the improvement of the national wealth level have received worldwide attention, which is called the Chinese miracle. The growth of "miracle type" is related to the wave of urbanization. Urbanization has become a key driving force in determining whether China's economy can continue to lead the world, and it is also a necessary way for developing countries to catch up with developed countries. And the construction of urbanization is, in the final analysis, the process of arrangement of land and population on the basis of economic system[1]. Therefore, there are two dimensions: on the one hand, the layout structure of the industry, the construction of infrastructure and the concentration of public resources make the rural labor force surge to the cities, causing "population urbanization". On the other hand, a large number of farmers cultivated land and homestead is occupied, the rural land has been reduced sharply, and urban land is expanding rapidly, namely "land urbanization". This paper will discuss urban development from the perspective of land urbanization.

Sichuan is currently in the midst of rapid economic growth and economic restructuring. Its development level of urbanization is faster than that of industrialization, and the demand for urban land has increased dramatically, which has led to the continuous expansion of urban built-up areas. In addition, with the Wenchuan earthquake in 2008 and the Ya'an earthquake in 2013, the destruction of regional economic and land resources has made the management and adjustment of land use layout in Sichuan province more urgent, and the development faces more serious challenges.

2. Literature review

The study of the relationship between the two starts from classical economics, and the land resource is used as a production factor to promote economic growth together with other factors. Later, Lance Freeman incorporated the land as an endogenous variable into AK model and concluded that the optimal utilization of land resources can promote economic growth, but it must rely on advanced
technology and innovation[2]. There are four main researches on the relationship between urban land expansion and economic growth in China: first, the research of driving force. Basically, the conclusion is that economic growth has a positive driving effect on the expansion of built-up area. Second, causality analysis. The basic study focused on Granger causality test, when GDP increased by 10 percentage points, urban land expanded by 3 percentage points[3]. Third, the contribution of urban land expansion to economic growth. Main conclusions include positive contribution of the different level[4-5], and the difference may be due to different measurement methods, space and time scales. The contribution of urban land expansion to economic growth is decreasing[6-7]. The reason is that with the advancement of industrialization and the progress of science and technology, technology and system have become the main factors driving economic growth. The negative attitude is that urbanization is the product of economic development, rather than the urban sprawl led by people, and the urban land expansion has no significant correlation with per capita GNP[8]. In addition, there are also studies on the efficiency of urban land use. The basic conclusion is that the efficiency of urban land use is decreasing from east to west, and there are obvious spatial features, regional differences and extensive features of urban land use efficiency, and there is no optimal allocation of resources. Fourth, studies on the relationship between the two, mainly include "Decoupling Theory", "Kuznets curve model" and "Co-integration theory". Generally speaking, most of China is in the weak decoupling region [9], and the Kuznets curve has been basically confirmed and is on the left.

The above research results to clarify the relationship between urban land expansion and economic growth has made the important contribution, but economic growth not only includes the growth of the economy, also involves the change of economic structure. The relationship between the two can not be fully analyzed when in the analysis, only the gross or per capita GDP is considered. In addition, there are fewer studies in the central and western regions as well as individual provinces and cities in the study of regional selection. Therefore, this paper takes 18 prefecture-level cities in Sichuan province as the research objects, considers the impact of new-type urbanization in recent years, and analyzes the impact of economic growth and economic structure on urban land expansion.

3. Empirical analysis

3.1 Selection and processing of index data

In general, urban construction area or urban construction land area should be selected to illustrate the urban land expansion, in which the area of built-up area is biased toward reality and emphasizes the properties that have been built and actually developed. The urban construction land emphasizes the attribute of artificial planning control, referring to the other literatures and the interpretation of the basic technical terms of urban planning (GB/T 50280-98), and the urban built-up area index is used to express it. Economic growth includes the growth of economic aggregate and the change of economic structure. For the selection of this index, the influences of income distribution and economic structure variables on urban land expansion are mainly taken into account. Referring to the index system proposed by American economist Adelmari and Morris as well as the relevant division basis in domestic literature, on the basis of the comprehensive consideration of its completeness, applicability and comprehensiveness, this article selects GDP per capita to reflect the growth of the economy, with 2 & 3 industry as a share of GDP, the fixed asset investment as a share of GDP, the real growth rate of retail sales of consumer goods, foreign investment as a share of GDP, fiscal revenue and expenditure as a share of GDP to reflect the change of economic structure.

The data are from China's urban statistical yearbook, China land and resources statistical yearbook, China statistical yearbook, Sichuan statistical yearbook and national economic bulletin from 2001 to 2015. For eliminating the influence of price factor at the same time, regional price index of investment in fixed assets, is used to adjust regional total investment in fixed assets, we will adjust the total investment of fixed assets in various regions with the fixed asset investment price index of various regions, and adjust the total retail sales of consumer goods in each region with the regional commodity retail price index. According to the average exchange rate of the US dollar in 12 months,
the actual amount of foreign investment is adjusted, and the total amount of foreign investment and the total amount of fiscal revenue and expenditure are adjusted by the consumer price index. Since the prefecture-level city of Sichuan province was 13 in 2000, and 1 sub-provincial city of 17 prefecture-level cities after 2000, the data of 2001-2015 (2000-2014) were selected for analysis.

3.2 Model construction and measurement analysis

Referring to the econometric model of Kuznets curve in the international environment and relevant literatures at home and abroad, and referring to the EKC (environmental kuznets) model proposed by Bandyopadhyay and Shafik in 1992, the following regression model is selected:

\[
\ln Y_{it} = \beta_0 + \beta_1 \ln X_{it} + \beta_2 (\ln X_{it})^2 + \beta_3 (\ln X_{it})^3 + \beta_4 X_j + \beta_5 \ln X_{it} + \epsilon
\]

Among them, the subscript \(i \) represents the region, \(t \) represents the year. The economic structure is added as a control variable one by one, so the expansion formula of the model is obtained:

\[
\ln Y = \beta_0 + \beta_1 \ln X + \beta_2 (\ln X)^2 + \beta_3 (\ln X)^3 + \beta_4 X_j + \beta_5 X_j \ln X + \epsilon
\]

\[
\ln Y = \beta_0 + \beta_1 \ln X + \beta_3 (\ln X)^3 + \beta_4 X_j + \beta_5 X_j \ln X + \epsilon
\]

\[
\ln Y = \beta_0 + \beta_1 \ln X + \beta_2 (\ln X)^2 + \beta_4 X_j + \beta_5 X_j \ln X + \epsilon
\]

Among the above model sets: \(Y \) represents the area of built-up area; \(X \) represents per capita GDP (yuan); \(X_j \) represents the j-th economic structure variable (j takes 1-7). Among them: \(X_1 \) is the secondary industry proportion (%), \(X_2 \) is the proportion of the tertiary industry (%), \(X_3 \) is the input-output ratio (%), \(X_4 \) is the real growth rate of retail sales of consumer goods (%), \(X_5 \) is the proportion of actual foreign investment in GDP(%), \(X_6 \) is the ratio of fiscal expenditure to GDP(%); \(X_7 \) is the proportion of fiscal revenue to GDP(%); \(\beta_0 \) represents the intercept term. \(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5 \) are undetermined parameters; \(\epsilon \) represents item of random error.

3.2.1 The Kuznets curve effect analysis of economic aggregate and urban land expansion

Because the classical least squares regression is the objective function that minimizes the error square and the variance is an unsteady statistic. In order to eliminate abnormal points here and check whether there is heteroscedasticity, with the least square regression of robustness, Eviews8.0 measurement analysis software was used to bring the data of the built-up area (square kilometer) and per capita GDP (yuan) into the model, and the model was eliminated after eliminating the heterogeneity:

\[
\ln Y = -61.081 + 21.974 \ln X - 2.531 (\ln X)^2 + 0.099 (\ln X)^3 -1.79 \quad 1.95 \quad -2.05 \quad 2.20
\]

Among them, the first power coefficient is positive, the quadratic coefficient is negative, and the coefficient of the third power is positive, indicating that the curve is probably closer to the N shape. Due to the possibility of heteroscedasticity, the fixed effect model was adopted. The total residual sum was 14.84, the standard deviation was 0.24, the P value was 0.00, less than 0.05, and the significance level was 5%. The regression of core variables is statistically significant, that is, with the increase of \(\ln X \), \(\ln Y \) and \(\ln X \) have obvious positive regression relationship.

In order to clarify the exact time of the turning point, the threshold regression was adopted and the fact were found that the maximum value of the threshold was 2002.10 and the confidence interval was 2000.13-2002.89. It can be seen from the least squares regression results that the core variable coefficients of the three segments are statistically significant, indicating that the curve equation of each segment is valid according to two periods. The final two threshold values were respectively 2002.10 and 2010.11, which were randomly selected 1000 times. When determining whether the second threshold was reasonable, it was found that \(F=17.939, P=0.000 \), indicating that the two threshold settings were reasonable. Therefore, in 2002 and 2010, there was a turning point. In 2002, the construction area of Sichuan province was 889 square kilometers, with per capita GDP of 144,083 yuan. In 2010, the construction area of Sichuan province was 1,328 square kilometers, with a per capita GDP of 395,343 yuan.

To test whether the above estimate is equal to its true value, the threshold value\(^{[11]}\) is tested by the maximum likelihood estimator of Hansen (1996) to obtain the statistic: 367
It is known from the test chart of the threshold value that the urban land expansion and economic growth in Sichuan province are roughly N distribution, the LR (maximum likelihood estimator) showed N distribution of a significant decrease in the first - then up - and then descending, and the inflection point appeared in 2002 and 2010, which was estimated to be correct.

3.2.2 Analysis of the impact of economic structural variables on urban land expansion

Each economic structure variable is brought into the model set separately, and the measurement model of each variable and economic growth and urban land expansion is constructed by using the EViews 8.0 measurement software, and the model is tested and selected. The specific results are as follows (table 1).

Table 1. Econometric model of economic structure variables, per capita GDP and built-up area.

<table>
<thead>
<tr>
<th>Area of built-up area</th>
<th>RGDP</th>
<th>the industrial structure</th>
<th>lnY=81.078-25.240 lnX+2.549 lnX2 -0.0778 lnX3+22.227 X1-2.497 X1 lnX</th>
<th>R²=0.773</th>
<th>Adj-R²=0.769</th>
<th>F=190.397</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5.30) (-5.48) (5.64) (-5.40) (6.66) (-7.28)</td>
<td></td>
<td>190.397</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area of built-up area</th>
<th>RGDP</th>
<th>Input-output ratio (modified model)</th>
<th>lnY=-0.430+0.457 lnX-7.580 X3+0.787 X3 lnX</th>
<th>R²=0.662</th>
<th>Adj-R²=0.658</th>
<th>F=183.003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-0.35) (3.45) (-3.11) (3.06)</td>
<td></td>
<td>183.003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area of built-up area</th>
<th>RGDP</th>
<th>Consumption level (not significant)</th>
<th>lnY=48.758-13.551 lnX+1.279 lnX2-0.037 lnX3-0.394 X4+0.041 X4 lnX</th>
<th>R²=0.705</th>
<th>Adj-R²=0.700</th>
<th>F=133.328</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2.99) (-2.80) (2.70) (-2.42) (-0.17) (0.17)</td>
<td></td>
<td>133.328</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area of built-up area</th>
<th>RGDP</th>
<th>Foreign trade level</th>
<th>lnY=40.036-11.140 lnX +1.069 lnX2-0.032 lnX3-27.775 X5+4.351 X5 lnX</th>
<th>R²=0.762</th>
<th>Adj-R²=0.757</th>
<th>F=178.125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2.76) (-2.59) (2.54) (-2.33) (-1.77) (2.60)</td>
<td></td>
<td>178.125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area of built-up area</th>
<th>RGDP</th>
<th>Fiscal spending</th>
<th>lnY=35.525-10.625 lnX+1.053 lnX2-0.030 lnX3+37.618 X6-4.070 X6 lnX</th>
<th>R²=0.762</th>
<th>Adj-R²=0.757</th>
<th>F=178.125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2.29) (-2.32) (2.35) (-2.08) (5.33) (-5.40)</td>
<td></td>
<td>178.125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area of built-up area</th>
<th>RGDP</th>
<th>Fiscal spending</th>
<th>lnY=46.186-12.777 lnX+1.1752 lnX2-0.032 lnX2+54.872 X7-5.057 X7 lnX</th>
<th>R²=0.725</th>
<th>Adj-R²=0.720</th>
<th>F=147.040</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2.93) (-2.72) (2.55) (-2.16) (2.64) (-2.37)</td>
<td></td>
<td>147.040</td>
<td></td>
</tr>
</tbody>
</table>

Among them, the input-output ratio represented by X_3 and the actual growth rate of the total retail sales which is represented by X_4 is not significant, and the expression of model X_3 is changed to make it significant, and the X_4 variable is discarded at the same time. From the above regression results, the judgment coefficient (R2) is above 66%, and the highest level is 79%, indicating that these independent variables can explain enough information, and the explanatory power of these models is strong. Moreover, the overall significance of the model verify that F value passed the test of significance of 10% and the statistics of t were all significant in the confidence interval of 10%.

4. Analysis of empirical results

4.1 Kuznets curve relationship analysis of the relationship between economic growth and urban land expansion

In the 18 prefecture-level cities of Sichuan province, the coefficient of one term is positive, the
second coefficient is negative, the third term coefficient is positive, and the urban land expansion curve is N type, indicating that the urban land expansion has already appeared the Kuzniz curve effect on the whole. The inflection point of Sichuan province appeared in 2002 and 2010, and reached the inflection point for the first time when the per capita GDP reached 144,083 yuan, but then it rose steadily. It can be seen that in the years that followed, the economy grew more slowly, which is perhaps related to the economic turmoil caused by the 2008 earthquake. Subsequently, the urban built-up area and the GDP growth rate of the second and third industries in municipal districts is relatively higher. To sum up, Sichuan province is still in the stage of rapid expansion.

4.2 Analysis of the impact of economic structural variables on urban land expansion

In order to analyze the independent influence of each economic structure variable on urban land expansion, the first derivative function of the above optimal model is obtained by keeping other variables constant, and the derivative function is:

\[
Y_1 = 22.227 - 2.499 \times \text{LOG}(X) \\
Y_2 = -25.657 + 2.905 \times \text{LOG}(X) \\
Y_3 = -7.580 + 0.787 \times \text{LOG}(X) \\
Y_4 = -0.394 + 0.041 \times \text{LOG}(X) \\
Y_5 = -27.775 + 4.351 \times \text{LOG}(X) \\
Y_6 = 37.618 - 4.070 \times \text{LOG}(X) \\
Y_7 = 54.872 - 5.057 \times \text{LOG}(X)
\]

Then, the per capita GDP panel data is substituted into each of these derivatives to find the function value.

4.2.1 Analysis of the marginal impact of economic structure variables on urban land expansion

Judging from the impact of industrial structure on urban land expansion, the first derivative of the second industry is positive and shows a gradual downward trend, indicating that as the proportion of the second industry increases, the impact on urban land expansion is smaller and the speed of urban land expansion slows down. The first derivative of the third industry is negative and it is gradually increasing, indicating that as the proportion of the tertiary industry decreases, the marginal change rate of urban land expansion increases year by year, and the speed of urban land expansion will be accelerated.

In view of that influence of the input production ratio on urban land expansion, the first derivative of the proportion of fixed assets investment is negative and is increasing gradually, which shows that with the increase of the proportion of fixed assets investment, the marginal change rate of urban land expansion is increasing year by year, and the speed of urban land expansion will be accelerated.

In view of that influence of consumption level on urban land expansion, the first derivative of the real growth rate of retail sales of consumer goods is positive and increasing, which shows that with the increase of the real growth rate of retail sales of consumer goods, the marginal change rate of urban land expansion is increasing year by year, and the speed of urban land expansion will be accelerated.

In view of that effect of foreign trade on urban land expansion, the first derivative of foreign real investment is gradually increasing, which was negative in 2000-2003, and the increase in the period from 2004 to 2014 is positive, which means that with the increase of the proportion of foreign real investment, the marginal change rate of urban land expansion is increasing year by year, and the speed of urban land expansion will be accelerated.

In view of that effect of financial revenue and expenditure on urban land expansion, The first derivative of the fiscal revenue and expenditure ratio is positive, and shows a gradual downward trend, which means that with the increase of the proportion of fiscal expenditure, the marginal change rate of urban land expansion is decreasing year by year, and the rate of urban land expansion is slowed down.

4.2.2 The influence of each variable of economic structure on the area of built-up area - per capita income curve

The interaction coefficient of GDP per capita and economic structural variables represents the influence of each economic structure variable on the relationship between GDP per capita and urban
land expansion, that is, the influence of each economic structure variable on the area of the built-up area - per capita GDP curve. After taking the interactive item coefficient into the optimal model, the area of the built-up area - per capita income curve under the economic structure variable was drawn.

The influence coefficient of the second industry on the area of built-up area - per capita income curve is -2.499. With the increase of the proportion coefficient of the second industry, the area of the built-up area—the per capita income curve gradually flattens out, the urban land expansion rate slows down, and the demand for urban land decreases. The third industry influence coefficient is 2.905, and as the proportion coefficient increases gradually, the curve relationship between the built-up area and the per capita income is steeper and the speed of urban land expansion will increase, which will increase the demand for urban land. The influence coefficient of fixed assets investment as a proportion of GDP is 0.787, and the influence coefficient is small, indicating that the influence degree is small. With the increase of input-output ratio, the curve tends to be steep, the urban land expansion speed is accelerated, and the demand for urban land increases gradually. The impact coefficient of foreign investment as a proportion of GDP is 4.351, which has a large influence coefficient and indicates a large influence degree. With the increase of the proportion of foreign investment, the curve tends to be steep, the urban land expansion speed is accelerated, and the demand for urban land will gradually increase. The impact of fiscal expenditure is slightly complicated. The impact coefficient of fiscal expenditure as a share of GDP is -4.070, and the influence coefficient of fiscal revenue as a proportion of GDP is -5.057. In terms of impact coefficient, the impact of fiscal expenditure on the area of the built-up area - per capita income curve is slightly larger than that of fiscal revenue, and the overall direction of influence is negatively correlated. With the increase of the proportion coefficient of fiscal expenditure, the curve tends to steepen before reaching the inflection point, and the urban land expansion speed is accelerated, and the demand for urban land expansion is greater. However, with the increase of the proportion of fiscal revenue, the curve tends to steepen before reaching the inflection point, the urban land expansion speed is accelerated, and the demand for urban land expansion is relatively large, and the demand for urban land expansion is gradually stable (the demand for urban land expansion is small-small and small-the smallest trend). After reaching the inflection point, the curve flattens out, and the rate of urban land expansion slows down, indicating that the demand for urban land in the fiscal revenue increases first and then decreases.

5. Conclusions and recommendations

5.1 Conclusions

(1) The Sichuan province is in the period of rapid economic growth and economic structure adjustment, the accelerating process of industrialization and urbanization, and the demand for construction land and urban land is also in the growth stage. In 2014, the urbanization rate of Sichuan province reached 46.3%, surpassing the industrialization rate for the first time in nearly 10 years. Cultivated land resource fell slightly in 2003, then basically is the same situation, indicating that cultivated land protection consciousness and policies increased and the urban land expansion no longer rely on cultivated land resources.

(2) In the case of the Kuznniz curve effect of economic growth on urban land, the urban land expansion in Sichuan province has decreased - increasing - decreasing "N" type three relations, which basically follows the Kuznets curve characteristics and the inflection point appeared in 2002 and 2010. At present, the overall economic development of Sichuan province is on a steady upward stage, and at the same time, urban land expansion is also in the growth stage. The concept of land protection and sustainable development is deep, and the land intensive conservation and utilization level are high.

(3) The proportion of the secondary industry as well as the fiscal revenue and expenditure ratio are negatively correlated with per capita GDP and the rate of urban land expansion. Their ascension will reduce the demand for urban land by economic growth, flattening the urban land - per capita
income curve and the degree of influence varies from big to small: secondary industry, fiscal expenditure and fiscal revenue. However, the third industry proportion (declining development level), the change of investment level and the proportion of foreign trade (increasing level of development) will accelerate the speed of urban land, so that the urban land - per capita income curve tends to be steep, and the demand for urban land is increasing. The degree of influence from big to small is: foreign trade level, tertiary industry and investment level. To sum up, the impact of economic structure on urban land expansion is different from the mode of influence. How to through the adjustment of economic structure influence the speed of urban land expansion is the problem we need to consider.

5.2 Recommendations

(1) Coordinating urbanization development and improving the utilization efficiency of urban land

The level of urbanization in Sichuan province is faster than that of industrialization. In the process of urbanization, on the one hand, the rural population transfers to the city, providing sufficient labor forces for the development of the secondary and tertiary industries, making the development of the industrial economy more efficient. On the other hand, a large number of farmers in the city will promote the demand for urban commercial and residential land, leaving the rural land largely idle. Therefore, we should coordinate various contradictions in the urbanization process, narrow the income of urban and rural residents, and improve the urban and rural planning system. At the same time, the construction land index is allowed to flow across the region, and the difference land policy is adopted to improve the utilization efficiency of urban land, change the traditional incremental distribution pattern, and realize the change of incremental allocation to stock adjustment.

(2) Accelerating the adjustment of industrial structure and optimize the investment structure

At present, the development of the second industry in Sichuan province is slightly higher than that of the tertiary industry, and the level of foreign investment is slightly less than that of fixed asset investment. It is particularly important to adjust the strategic structure, accelerate the technological innovation capability and the development of new industries, and optimize the way of economic growth. In addition, we should use policy tools and location advantages to develop core pillar industries, coordinate industrial space layout, and coordinate development between regions so as to guide the development of western economy. In terms of investment, improving the quality and efficiency of investment and improving the investment system.

(3) Strengthening the management of fiscal revenue and expenditure and giving play to the benefits of fiscal funds

As a basic form of national or local fiscal application, the fiscal revenue and expenditure is slightly more complicated to the impact of the area of built-up area-R GDP curve. Therefore, it is necessary to strictly follow the relevant requirements and regulations of the budget law, timely and accurately transfer payment indicators, optimize the structure of fiscal revenue and expenditure, and enhance the transparency of the fiscal revenue and expenditure. In addition, we should carefully study the major problems faced by the economic development and the urban land use of Sichuan province. Through fiscal and taxation reform, housing registration and other policies to solve the problems of land finance, we should strengthen the coordination of policies, fiscal and financial instruments and give full play to the benefits of financial funds.

References

