An Improved Limited Tolerance Dominance Relation in Incomplete Ordered Decision Systems

Li-he GUAN and Hong WANG

School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

*Corresponding author

Keywords: Rough sets, Dominance relations, Incomplete ordered decision systems.

Abstract. A method for analyzing incomplete ordered decision system (IODS) is proposed. First, we analyze the limitations of existing generalized dominance relations. On this basis, we define an improved limited tolerance dominance relation, and study its properties. Considering that the monotonicity of boundary region of IODS is not established, the attribute reduction based on the approximate quality is defined. The significance of attributes based on the approximate quality is defined, and a heuristic attribute reduction algorithm with time complexity $O(|U|^2|C|^3)$ is proposed. Finally, the validity of this method is verified by an example.

Introduction

To analyze the ordered decision systems (ODS), a dominance rough set approach (DRSA) is proposed in [1]. The method has been successfully applied to multicriteria decision problems [2,3]. At present, DRSA has been extended to handle various types of ODS [4-6]. To analyze the inconsistencies caused by errors, the variable precision DRSA [7] and variable consistency DRSA [8] were proposed. Especially, to handle incomplete ODS (IODS), the dominance relations (DR) is generalized, and some generalized DRs have been defined, such as tolerance DR [9], limited tolerance DR (LTDR) [10], λ-degree LTDR [11], similarity DR [12], characteristic DR [13] and valued DR [14]. In [5], the properties of the extensions of DRSA were studied.

But, the existing generalized DRs have some limitations in dealing with IODS. In tolerance DR, two objects that uncertainly satisfy dominance relation on all attributes may be considered as indiscernible [9]. In similarity DR, two objects that certainly satisfy dominance relation on many attributes may be separated on all attributes. The characteristic DR is a combination of similarity DR and tolerance DR, and it can not avoid their limitations. In valued DR, the prior probability distribution of attribute values in IODS need to be known, and it is difficult to choose the appropriate threshold for different IODSs. Besides, there are three different LTDRs proposed by Hu et al. [10,11] and Luo et al.[16] respectively. In this paper, based on the analysis of their limitations, an improved LTDR denoted by ILTDR is proposed, which can better handle incomplete information in IODS.

Preliminaries

Definition 1 [1]. An ODS is $S=<U, C \cup D, V, f>$, here U is the objects set, $C \cap D = \emptyset$, C is the condition criteria set, D is the decision criteria set, $V=\cup_{a \in C \cup D} V_a$ and V_a is the range of a, and f is a function such that $f(x,a) \in V_a$ for $a \in C \cup D$ and $x \in U$.

In an ODS, D partitions U into $CL=\{Cl_1, Cl_2, \ldots, Cl_n\}$. The upward union is $Cl_r^z=\cup_{s \leq r} Cl_s$, and the downward union is $Cl_r^z=\cup_{s \geq r} Cl_s$, where $r=1,2, \ldots, n$ [1].

In addition, if there are some unknown conditional attribute values in ODS, the ODS is called IODS, otherwise a complete ODS (CODS). For simplicity, $a(x)$ represents the value of x on a, and all the missing conditional attribute values in IODS are denoted as “*”.

Definition 2 [1]. Let S be CODS, the DR with respect to $A \subseteq C$ is $D_A=\{ <x,y> \in U^2 | \forall a \in A (a(x) \geq a(y)) \}$, here $a(x) \geq a(y)$ implies that x is at least as good as y on a.

103
In order to analyze here, the threshold are respectively defined as:

Definition 4. Let S be an IODS and $A \subseteq C$, four different types of generalized dominance relations in $[9,10,11,16]$ are respectively defined as:

$$TD_A = \{ \langle x, y \rangle \in U^2 | \forall a \in A (a(x) \geq a(y) \lor a(x) = * \lor a(y) = *) \}$$

$$LD_A^I = \{ \langle x, y \rangle \in U^2 | \langle x, y \rangle \in TD_A \land M_A(x, y) \neq \emptyset \}$$

$$LD_A^II = \{ \langle x, y \rangle \in U^2 | \langle x, y \rangle \in TD_A \land |M_A(x, y)|/|C| \geq \lambda \}$$

$$LD_A^III = \{ \langle x, y \rangle \in U^2 | \forall a \in A (a(x) \geq a(y) \lor (a(x) = * \land a(y) = *) \lor a(x) = * \land a(y) = min V_a) \} \cup I_U$$

Example 1. Table 1 shows an IODS, which is the comments on 12 papers. Here, the ILTDR overcomes the limitations of tolerance DR.

<table>
<thead>
<tr>
<th>Papers</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
<th>p_5</th>
<th>p_6</th>
<th>p_7</th>
<th>p_8</th>
<th>p_9</th>
<th>p_{10}</th>
<th>p_{11}</th>
<th>p_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originality a_1</td>
<td>2</td>
<td>*</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Presentation a_2</td>
<td>*</td>
<td>1</td>
<td>*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>*</td>
</tr>
<tr>
<td>Technical soundness a_3</td>
<td>1</td>
<td>*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>*</td>
<td>1</td>
</tr>
<tr>
<td>Overall evaluation d</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

From table 1, we can see the following results.

- For p_1 and p_2, there are $\langle p_1, p_2 \rangle$, $\langle p_2, p_1 \rangle \in TD_C$. But they uncertainly satisfy dominance relation on $\forall a \in C$, and the probability of satisfying dominance relation on C is little. p_2 and p_{12} also have this problem. Therefore, TD_A is too loose to describe the order relationship between objects.

- For p_2 and p_3, there are $\langle p_2, p_3 \rangle \not\in LD_C^I$ and $\langle p_2, p_3 \rangle \not\in LD_C^II$ for $M_C(p_2, p_3) = \emptyset$. But $a_1(p_3) \geq a_1(p_2)$ for $a_1(p_3) = \max V_{a_1}$ and $a_1(p_2) = *$. So, the $M_A(x,y)$ in (2) and (3) is not suitable. The LD_A^I and LD_A^II do not consider the case of the maximum and minimum attribute values in the attribute domain.

- For p_3 and p_4, although p_3 definitely dominates p_4 on a_1 and a_3, there is $\langle p_3, p_4 \rangle \not\in LD_C^III$ for $a_2(p_3) = *$ and $a_2(p_4) = \min V_{a_2}$. This problem also exist for p_{10} and p_{11}, p_{10} and p_{12}. The LD_C^III considers the case of the maximum and minimum attribute values. But, its definition constraints are too strict.

An ILTDR in IODS

Definition 4. Let S be an IODS and $A \subseteq C$, an ILTDR is defined as

$$ILD_A = \{ \langle x, y \rangle \in U^2 | \forall a \in A (a(x) \geq a(y) \lor a(x) = * \lor a(y) = *) \land IM_A(x, y) \neq \emptyset \} \cup I_U,$$

here $IM_A(x,y) = \{ a | a(x) = \max V_a \lor a(y) = \min V_a \lor (a(x) = * \land a(y) = *) \}$, $I_U = \{ \langle x, x \rangle | x \in U \}$.

From table 1, we have the following results:

- There are $\langle p_1, p_2 \rangle$, $\langle p_2, p_1 \rangle$, $\langle p_2, p_{12} \rangle$, $\langle p_2, p_3 \rangle \in TD_C$, but $\langle p_1, p_2 \rangle$, $\langle p_2, p_{12} \rangle$, $\langle p_2, p_3 \rangle \not\in ILD_C$. This indicates that the ILTDR overcomes the limitations of tolerance DR.

- There are $\langle p_3, p_4 \rangle \not\in LD_C^I$ and $\langle p_3, p_3 \rangle \not\in LD_C^II$, but $\langle p_3, p_2 \rangle \in ILD_C$ for $IM_C(p_3, p_2) = \{ a_1 \}$. There is $\langle p_3, p_4 \rangle \in LD_C^III$, but $\langle p_3, p_4 \rangle \not\in ILD_C$. These indicate that the ILTDR is an improvement of I, II and III LTDR.

Further, the lower approximations and upper approximations of Cl_r^\geq and Cl_r^\leq, $r=1,2, \ldots, n$, are
\[\text{ILD}_A(C^\L_r) = \{ x \in U \mid \text{ILD}_A^\L(x) \subseteq C^\L_r \}, \quad \text{ILD}_A(C^\R_r) = \{ x \in U \mid \text{ILD}_A^\R(x) \cap C^\R_r \neq \emptyset \} = \bigcup_{x \in C^\R_r} \text{ILD}_A^\R(x), \] (6)

\[\text{ILD}_A(C^\L_r) = \{ x \in U \mid \text{ILD}_A^\L(x) \subseteq C^\L_r \}, \quad \text{ILD}_A(C^\R_r) = \{ x \in U \mid \text{ILD}_A^\R(x) \cap C^\R_r \neq \emptyset \} = \bigcup_{x \in C^\R_r} \text{ILD}_A^\L(x), \] (7)

where \(\text{ILD}_A^\L(x) = \{ z \in U \mid <x,z> \in \text{ILD}_A \} \) and \(\text{ILD}_A^\R(x) = \{ z \in U \mid <z,x> \in \text{ILD}_A \} \).

The boundary and positive regions of \(Y \in \{ C^\L_r, C^\R_r \} \), \(r=1,2, \ldots, n \), are defined as

\[B_{n, \text{ILD}}(Y) = \text{ILD}_A(Y) - \text{ILD}_A(Y), \quad \text{POS}_{n, \text{ILD}}(Y) = \text{ILD}_A(Y). \] (8)

The approximation quality (or sorting quality) of the partition \(CL \) is

\[\gamma_{n, \text{ILD}}(CL) = U - ((\bigcup_{r=1}^{n} B_{n, \text{ILD}}(\text{ILD}_A^\L(C^\L_r)))) \cup ((\bigcup_{r=1}^{n} B_{n, \text{ILD}}(\text{ILD}_A^\R(C^\R_r)))) \big/ |U|. \] (9)

This ratio \(\gamma_{n, \text{ILD}}(CL) \in [0,1] \) shows the relationship between all properly classified objects and all objects in \(U \). If \(\gamma_{n, \text{ILD}}(CL) < 1 \), then \(S \) is inconsistent, otherwise consistent.

Considering an IODS \(S, x \in U \) and \(A, B \subseteq C \) such that \(A \not\subseteq B \). According to definitions (5)-(7), we can know \(L_B \supseteq \text{ILD}_B \supseteq \text{ILD}_B \subseteq TD_B \) and \(L_B \subseteq \text{ILD}_B \), but are not always \(\text{ILD}_B = \cap_{x \in X} \text{ILD}_B(x) \) and \(\text{ILD}_B(x) \subseteq \text{ILD}_A \) for any \(x \in X \). So the monotonicity of the ILTDR and the dominating (dominated) sets are not valid. Further, the monotonicity of approximations and boundary regions of \(C^\L_r \) (here \(\Delta \subseteq \{,\} \)) for any \(r=1,2, \ldots, n \) is not valid, i.e., \(\text{ILD}_A(C^\L_r) \not\subseteq \text{ILD}_B(C^\L_r) \), \(\text{ILD}_B(C^\R_r) \not\subseteq \text{ILD}_A(C^\R_r) \) and \(B_{n, \text{ILD}}(C^\L_r) \not\subseteq B_{n, \text{ILD}}(C^\L_r) \).

Proposition 1. Let \(S \) be an IODS, for any \(A \not\subseteq C \), we have the following results:

- Let \(\Delta \subseteq \{,\} \) and \(r=1,2, \ldots, n \), \(\text{ILD}_A(C^\L_r) \subseteq C^\L_r \subseteq \text{ILD}_A(C^\L_r) \). (10)
- For \(r=1,2, \ldots, n-1 \), \(\text{ILD}_A(C^\L_r) = U - \text{ILD}_A(C^\R_{r+1}) \), \(\text{ILD}_A(C^\L_{r+1}) = U - \text{ILD}_A(C^\L_r) \). (11)
- For \(r=1,2, \ldots, n-1 \), \(B_{n, \text{ILD}}(C^\L_r) = B_{n, \text{ILD}}(C^\L_{r+1}) \), \(B_{n, \text{ILD}}(C^\L_{r+1}) = B_{n, \text{ILD}}(C^\L_r) \). (12)
- For \(\forall r, t \in \{1,2, \ldots, n\} \) such that \(r < t \),

\[\text{ILD}_A(C^\L_r) \subseteq \text{ILD}_A(C^\L_t), \quad \text{ILD}_A(C^\L_t) \subseteq \text{ILD}_A(C^\L_r), \quad \text{ILD}_A(C^\L_r) \subseteq \text{ILD}_A(C^\L_t), \quad \text{ILD}_A(C^\L_t) \subseteq \text{ILD}_A(C^\L_r). \] (13)

- For \(\forall r, t \in \{1,2, \ldots, n\} \) and \(\Delta \subseteq \{,\} \),

\[\text{ILD}_A(C^\L_r \cap C^\L_t) = \text{ILD}_A(C^\L_r) \cap \text{ILD}_A(C^\L_t), \quad \text{ILD}_A(C^\L_r \cup C^\L_t) = \text{ILD}_A(C^\L_r) \cup \text{ILD}_A(C^\L_t). \] (14)

Proof.

- Obviously, (10) is true for the reflexivity of \(\text{ILD}_A \) and definitions (6)-(7).
- For \(\forall x \in U \), if \(\text{ILD}_A^\L(x) \not\subseteq C^\L_r \) \((r=1,2, \ldots, n-1) \), then \(x \notin \text{ILD}_A(C^\L_r) \). Otherwise, there is \(\text{ILD}_A^\L(x) \not\subseteq C^\L_r \Leftrightarrow \text{ILD}_A^\L(x) \cap (U - C^\L_r) \neq \emptyset \Leftrightarrow \text{ILD}_A^\L(x) \cap C^\L_r \neq \emptyset \). This implies \(x \notin \text{ILD}_A(C^\L_r) \).

So, we have \(\text{ILD}_A(C^\L_r) = U - \text{ILD}_A(C^\L_r) \). Similarly, \(\text{ILD}_A(C^\L_r) = U - \text{ILD}_A(C^\L_r) \) can be obtained. So, (11) is true.

- Because \(C^\L_1 = U = C^\L_n \), there is \(B_{n, \text{ILD}}(C^\L_1) = B_{n, \text{ILD}}(C^\L_n) \). According to (11), the equalities \(B_{n, \text{ILD}}(C^\L_r) = \text{ILD}_A(C^\L_r) - \text{ILD}_A(C^\L_{r+1}) = [U - \text{ILD}_A(C^\L_{r+1})] - [U - \text{ILD}_A(C^\L_r)] = B_{n, \text{ILD}}(C^\L_r) \) imply that (12) is true.

- For \(\forall r, t \in \{1,2, \ldots, n\} \) such that \(r < t \), there is \(C^\L_r \not\subseteq C^\L_t \). So, \(\text{ILD}_A^\L(x) \not\subseteq C^\L_t \) and \(\text{ILD}_A^\L(x) \cap C^\L_t \neq \emptyset \) mean, respectively, \(\text{ILD}_A^\L(x) \not\subseteq C^\L_t \) and \(\text{ILD}_A^\L(x) \cap C^\L_t \neq \emptyset \) for any \(x \in U \). Due to (6), there are \(\text{ILD}_A(C^\L_r) \subseteq \text{ILD}_A(C^\L_t) \) and \(\text{ILD}_A(C^\L_t) \subseteq \text{ILD}_A(C^\L_r) \). Similarly, the remaining two can be proved. So, (13) is true.
Due to (13), (14) is true.

In fact, (11) is an approximate complementarity, which indicates that if x definitely belongs to CL_{r+1} or better, it cannot belong to CL_r or worse. (12) is the identity of boundary region, which indicates that if x is uncertain about CL_{r+1}, it is also uncertain about CL_r. (13) is the monotonicity of the approximations about class labels, which indicates that the upper and lower approximations of objects set increase monotonically with its increase.

Proposition 2. Let S be an IODS, for any $A \subseteq C$, there are

$$\overline{ILD_A}(CL_r) = \bigcup_{r=1}^{n} Pos_{ILD_A}(CL_r) = \bigcup_{r=1}^{n} Pos_{ILD_A}(CL_r) = \overline{ILD_A}(CL_r) = \bigcup_{r=1}^{n} Bn_{ILD_A}(CL_r) = \bigcup_{r=1}^{n} Bn_{ILD_A}(CL_r).$$

Proof. Due to (8), (12) and (13), (15) is obviously true.

According to (15), the definition (9) of approximation quality for CL can be modified to

$$\gamma_{ILD}(CL) = 1 - \left| \bigcup_{r=1}^{n} Bn_{ILD_A}(CL_r) \right| / |U|. \quad (16)$$

Rough approximation is the basic operation of knowledge acquisition. The algorithm for calculating rough approximation induced by ILTDR in IODS is shown in Algorithm 1. Because the number of CL_{r+1} ($r=1,2,\ldots,n$) is much smaller than $|U|$, it's easy to know that the time complexity of Algorithm 1 is $O(|U|^2)$.

Algorithm 1. Calculating rough approximations induced by ILTDR

Input: an IODS S and $A \subseteq C$.

Output: the boundary regions and approximations of CL_{r+1} and CL_r, $r=1,2,\ldots,n$.

1. Let $ILD_A(Y) = \emptyset$, $\overline{ILD_A}(Y) = \emptyset$, $Bn_{ILD_A}(Y) = \emptyset$, here $Y \in \{ CL_r, CL_{r+1} \}$ and $r=1,2,\ldots,n$;

2. Calculate the dominating (dominated) sets $ILD_A^+(y)$ ($ILD_A(y)$) for each $y \in U$.

3. for each CL_r ($r=1,2,\ldots,n$) do

4. for each $y \in U$ do

5. if $ILD_A^+(y) \subseteq CL_r$ then $ILD_A(CL_r) = ILD_A(CL_r) \cup \{ y \}$;

6. if $y \in CL_r$ then $ILD_A(CL_r) = ILD_A(CL_r) \cup ILD_A(y)$;

7. end for

8. $Bn_{ILD_A}(CL_r) = ILD_A(CL_r) - ILD_A(CL_r)$;

9. if $r=1$ then $ILD_A(CL_r) = ILD_A(CL_r)$, $\overline{ILD_A}(CL_r) = \overline{ILD_A}(CL_r)$; $Bn_{ILD_A}(CL_r) = Bn_{ILD_A}(CL_r)$;

10. if $r>1$ then $ILD_A(CL_{r-1}) = U - ILD_A(CL_r)$, $\overline{ILD_A}(CL_{r-1}) = U - \overline{ILD_A}(CL_r)$; $Bn_{ILD_A}(CL_{r-1}) = Bn_{ILD_A}(CL_r)$;

11. end for

12. return $ILD_A(Y)$, $\overline{ILD_A}(Y)$, $Bn_{ILD_A}(Y)$, where $Y \in \{ CL_r, CL_{r+1} \}$ and $r=1,2,\ldots,n$;

Example 2. From Table 1, $CL=\{C1_1,C1_2,C1_3,C1_4\}$: $C1_1=\{p_{10},p_{12}\}$, $C1_2=\{p_2,p_4,p_5,p_8\}$, $C1_3=\{p_1,p_3,p_7,p_{10},p_{11}\}$, $C1_4=\{p_9\}$. Thus, $CL_1=U$, $CL_2=U \{-p_{10},p_{12}\}$, $CL_3=\{p_1,p_3,p_7,p_{10},p_{11}\}$, $CL_4=\{p_9\}$; $CL_1=\{p_6, p_{12}\}$, $CL_2=\{p_2,p_4,p_5,p_6,p_8,p_{12}\}$, $CL_3=U \{-p_9\}$, $CL_4=U$. By Algorithm 1, we have the following results:

$$ILD_A(CL_1) = U$$

$$ILD_A(CL_2) = \{ p_1, p_3, p_7, p_{10}, p_{11} \}$$

$$ILD_A(CL_3) = \{ p_1, p_3, p_5, p_7, p_{10}, p_{11} \}$$

$$ILD_A(CL_4) = \{ p_9 \}$$

$$Bn_{ILD_A}(CL_1) = \emptyset$$

$$Bn_{ILD_A}(CL_2) = \{ p_3, p_5, p_7, p_{10}, p_{11} \}$$

$$Bn_{ILD_A}(CL_3) = \{ p_1, p_3, p_5, p_{10}, p_{11} \}$$

$$Bn_{ILD_A}(CL_4) = \emptyset$$

$$ILD_A(CL_1) = \emptyset$$

$$ILD_A(CL_2) = \{ p_1, p_3, p_5, p_{10}, p_{11} \}$$

$$ILD_A(CL_3) = \{ p_1, p_3, p_{10}, p_{11} \}$$

$$ILD_A(CL_4) = \emptyset$$

$$Bn_{ILD_A}(CL_1) = \emptyset$$

$$Bn_{ILD_A}(CL_2) = \emptyset$$

$$Bn_{ILD_A}(CL_3) = \emptyset$$

$$Bn_{ILD_A}(CL_4) = \emptyset$$

Attribute Reduction Based on ILTDR in IODS

Under the ILTDR in IODS, the monotonicity of boundary region of CL_r ($r=1,2,\ldots,n$) is not established. Therefore, the monotonicity of approximate quality for CL is not valid. In other words,
\(\gamma_{\text{ILDS}}(CL) \leq \gamma_{\text{ILDS}}(CL) \) does not necessarily hold for \(A \subseteq C \). At this time, the attribute reduction method which keeps the approximate quality unchanged is no longer applicable. So, under the ILTDR in IODS, the definition of attribute reduction that does not reduce the approximate quality of partition \(CL \) can be shown in Definition 5.

Definition 5. \(S \) is an IODS and \(A \subseteq C \). If \(\gamma_{\text{ILDS}}(CL) \geq \gamma_{\text{ILDS}}(CL) \) and \(\gamma_{\text{ILDS}}(CL) < \gamma_{\text{ILDS}}(CL) \) for any \(B \subseteq A \), \(A \) is an attribute reduction of \(S \).

Definition 6. Let \(S \) be an IODS and \(A \subseteq C \). Due to (16), for any \(a \in A \), the significance of \(a \) with respect to \(CL \) is defined as

\[
\text{sig}(a,A,CL) = \gamma_{\text{ILDS}}(CL) - \gamma_{\text{ILDS}}(CL) = (|\bigcup_{i=1}^{n} B_{n_{\text{ILDS}}}(C_{i}^{c})|)/|U|.
\]

(17)

The \(\text{sig}(a,A,CL) \in [-1,1] \) describes the effect of \(a \in A \) on the approximation quality of partition \(CL \). On this basis, a heuristic attribute reduction algorithm of IODS is proposed in Algorithm 2, which does not reduce the approximation quality of \(CL \) with respect to \(C \).

Algorithm 2 Heuristic attribute reduction algorithm of IODS

Input: an IODS \(S \).

Output: the attribute reduction \(A \) of \(S \).

1. Let \(A = C \), \(A^* = \emptyset \).
2. Compute \(\gamma_{\text{ILDS}}(CL) = 1 - |\bigcup_{i=1}^{n} B_{n_{\text{ILDS}}}(C_{i}^{c})|/|U| \);
3. for each \(a \in A \) do
4. \(\text{sig}(a,A,CL) = \gamma_{\text{ILDS}}(CL) - \gamma_{\text{ILDS}}(CL) \);
5. if \(\text{sig}(a,A,CL) \geq 0 \) then \(A^* = A^* \cup \{a\} \);
6. end for
7. if \(A^* \neq \emptyset \) then \(\text{sig}(a^*,A,CL) = \max\{\text{sig}(a,A,CL) | a \in A^* \} \), \(A = A \setminus \{a^*\} \), go to Step 3;
8. return \(A \).

The Algorithm 2 can be analyzed as follows.

- In Step 2, the calculation of \(\gamma_{\text{ILDS}}(CL) \) is \(O(|U|^2(|C|+1)) \) according to Algorithm 1.
- In Steps 3-6, \(|A| \) boundary regions are calculated and the each one requires \(O(|U|^3(|A|-1)) \) according to Algorithm 1. Because \(|A| \leq |C| \), its calculation is \(O(|U|^3|C|^3) \).
- In Step 7, there are \(|C|-i \) candidate attributes in the \(i \)th loop, and the calculation of each loop is \(O(|U|^3(|C|-i)^2) \) according to Steps 3-6. The amount of calculation is \(\Sigma_{i=1}^{m} (|C|-i)^2|U|^2 = \Sigma_{i=1}^{m} (|C|^2-2|C|i+i^2)|U|^2 < |U|^2 |C|^3 \), here \(m \ll |C| \). So the calculation of Step 7 is \(O(|U|^3|C|^3) \).

Therefore, in the worst case, the time complexity of Algorithm 2 is \(O(|U|^3|C|^3) \).

Example 3. Use Algorithm 2 to find the attribute reduction of IOD in Table 1. First, we take \(A = C \), \(A^* = \emptyset \). The approximation quality \(\gamma_{\text{ILDS}}(CL) \) of partition \(CL \) is 0.17. Second, the significance of each attribute in \(A = \{a_1,a_2,a_3\} \) are \(\text{sig}(a_1,A,CL) = \text{sig}(a_2,A,CL) = 0 \), \(\text{sig}(a_3,A,CL) = -0.08 \). Thus there is \(A^* = \{a_1,a_2\} \). Next, here we select the attribute \(a_1 \) from \(A^* \), \(A = \{a_2,a_3\} \), and \(\gamma_{\text{ILDS}}(CL) = 0.17 \). And then, the significance of each attribute in \(A = \{a_2,a_3\} \) are \(\text{sig}(a_2,A,CL) = 0 \) and \(\text{sig}(a_3,A,CL) = 0.25 \). There is \(A^* = \{a_2,a_3\} \). \(a_3 \) is selected from \(A^* \), and \(A = \{a_2\} \). So, the attribute reduction is \(A = \{a_2\} \).

Conclusions

How to deal with data missing is a key problem in knowledge acquisition. The basic problem of knowledge acquisition in rough set theory is attribute reduction. This paper introduced an ILTDR, which is an extension the DRSA in IODS. This approach improves the limitations of the existing limited tolerance dominance relations. After analyzing the properties of rough approximation under the ILTDR, it is known that the monotonicity of positive region in IODS is no longer valid. Based on this, a heuristic attribute reduction algorithm of IODS is designed, which does not decrease the approximate quality. Examples show that this method can effectively deal with IODS. In future, we will study the decision rule extraction method based on the ILTDR.
Acknowledgement
This study was funded by the National Natural Science Foundation of China (No. F030117) and the Natural Science Foundation of Chongqing (No. cstc2015shmszx30004).

References