Open Access Open Access  Restricted Access Subscription Access

Artificial Generation of 2-D Fiber Reinforced Composite Microstructures with Statistically Equivalent Features

JAMAL F. HUSSEINI, SCOTT E. STAPLETON, EVAN J. PINEDA

Abstract


Fiber reinforced composites are used widely for their high strength and low weight advantages in various aerospace and automotive applications. While their use may be sought after, modeling of these material requires increasing fidelity at the lower scales to capture accurate material behavior under loading. The first steps in creating statistically equivalent models to real life cases is developing a method of rapid evaluation and artificial microstructure generation. The outlined work is capable of tracking microscale fiber positions and determining regions of localized volume fraction extrema (high and low end). Groupings of high and low volume fraction regions are called clusters and their geometry is used to characterize the microstructure. These cluster features can be evaluated for both artificial models and actual scans, allowing correlation to be established which can ultimately be used to regenerate statistically equivalent models. The results of this work show that if one feature is to be correlated, a model can be generated which matches almost exactly. But once more features are equally taken into account, the regeneration loses accuracy.


DOI
10.12783/asc36/35947

Full Text:

PDF

References


K. D. Potter, “UNDERSTANDING THE ORIGINS OF DEFECTS AND VARIABILITY IN COMPOSITES

MANUFACTURE,” p. 19.

J. Hapke, F. Gehrig, N. Huber, K. Schulte, and E. T. Lilleodden, “Compressive failure of UD-CFRP containing

void defects: In situ SEM microanalysis,” Composites Science and Technology, vol. 71, no. 9, pp. 1242–1249,

Jun. 2011, doi: 10.1016/j.compscitech.2011.04.009.

H. Huang and R. Talreja, “Effects of void geometry on elastic properties of unidirectional fiber reinforced

composites,” Composites Science and Technology, vol. 65, no. 13, pp. 1964–1981, Oct. 2005, doi:

1016/j.compscitech.2005.02.019.

D. Ashouri Vajari, C. González, J. Llorca, and B. N. Legarth, “A numerical study of the influence of

microvoids in the transverse mechanical response of unidirectional composites,” Composites Science and

Technology, vol. 97, pp. 46–54, Jun. 2014, doi: 10.1016/j.compscitech.2014.04.004.

B. B. Lahiri, S. Bagavathiappan, P. R. Reshmi, J. Philip, T. Jayakumar, and B. Raj, “Quantification of defects

in composites and rubber materials using active thermography,” Infrared Physics & Technology, vol. 55, no. 2,

pp. 191–199, Mar. 2012, doi: 10.1016/j.infrared.2012.01.001.

H. Ghayoor, S. V. Hoa, and C. C. Marsden, “A micromechanical study of stress concentrations in composites,”

Composites Part B: Engineering, vol. 132, pp. 115–124, Jan. 2018, doi: 10.1016/j.compositesb.2017.09.009.

P. M. Dixon, “Ripley’s K Function,” in Wiley StatsRef: Statistics Reference Online, American Cancer Society,

doi: 10.1002/9781118445112.stat07751.

W. Wang, Y. Dai, C. Zhang, X. Gao, and M. Zhao, “Micromechanical Modeling of Fiber-Reinforced

Composites with Statistically Equivalent Random Fiber Distribution,” Materials, vol. 9, no. 8, Art. no. 8, Aug.

, doi: 10.3390/ma9080624.

W. Ge, L. Wang, Y. Sun, and X. Liu, “An efficient method to generate random distribution of fibers in

continuous fiber reinforced composites,” Polymer Composites, vol. 40, no. 12, pp. 4763–4770, 2019, doi:

https://doi.org/10.1002/pc.25344.

T. Zhang and Y. Yan, “A comparison between random model and periodic model for fiber-reinforced

composites based on a new method for generating fiber distributions,” Polymer Composites, vol. 38, no. 1, pp.

–86, 2017, doi: https://doi.org/10.1002/pc.23562.

L. Borkowski, K. C. Liu, and A. Chattopadhyay, “Micromechanics Model to Link Microstructural Variability

to Fiber Reinforced Composite Behavior,” in 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference, 0 vols., American Institute of Aeronautics and Astronautics, 2014. doi:

2514/6.2014-0155.

V. V. Silberschmidt, “Account for Random Microstructure in Multiscale Models,” in Multiscale Modeling and

Simulation of Composite Materials and Structures, Y. W. Kwon, D. H. Allen, and R. Talreja, Eds. Boston, MA:

Springer US, 2008, pp. 1–35. doi: 10.1007/978-0-387-68556-4_1.

J. P. Myles, E. C. Flenley, N. R. J. Fieller, H. V. Atkinson, and H. Jones, “Statistical tests for clustering of

second phases in composite materials,” Philosophical Magazine A, vol. 72, no. 2, pp. 515–528, Aug. 1995, doi:

1080/01418619508239936.

M. A. Kiskowski, J. F. Hancock, and A. K. Kenworthy, “On the Use of Ripley’s K-Function and Its Derivatives

to Analyze Domain Size,” Biophys J, vol. 97, no. 4, pp. 1095–1103, Aug. 2009, doi: 10.1016/j.bpj.2009.05.039.

S. H. R. Sanei, E. J. Barsotti, D. Leonhardt, and R. S. Fertig, “Characterization, synthetic generation, and

statistical equivalence of composite microstructures,” Journal of Composite Materials, vol. 51, no. 13, pp.

–1829, Jun. 2017, doi: 10.1177/0021998316662133.

M. O. Smith et al., “A Modification of Ripley’s K Function to Measure Aggregation About a Mass,” p. 27.

K. C. Liu and A. Ghoshal, “Validity of random microstructures simulation in fiber-reinforced composite

materials,” Composites Part B: Engineering, vol. 57, pp. 56–70, Feb. 2014, doi:

1016/j.compositesb.2013.08.006.

S. Li and S. Ghosh, “Modeling interfacial debonding and matrix cracking in fiber reinforced composites by the

extended Voronoi cell FEM,” Finite Elements in Analysis and Design, vol. 43, no. 5, pp. 397–410, Mar. 2007,

doi: 10.1016/j.finel.2006.11.010.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, “Determination of the size of the representative

volume element for random composites: statistical and numerical approach,” International Journal of Solids

and Structures, vol. 40, no. 13, pp. 3647–3679, Jun. 2003, doi: 10.1016/S0020-7683(03)00143-4.

S. Moorthy and S. Ghosh, “A Model for Analysis of Arbitrary Composite and Porous Microstructures with

Voronoi Cell Finite Elements,” International Journal for Numerical Methods in Engineering, vol. 39, no. 14,

pp. 2363–2398, 1996, doi: https://doi.org/10.1002/(SICI)1097-0207(19960730)39:14<2363::AIDNME958>

0.CO;2-D.

S. Swaminathan and S. Ghosh, “Statistically Equivalent Representative Volume Elements for Unidirectional

Composite Microstructures: Part II - With Interfacial Debonding,” Journal of Composite Materials, vol. 40, no.

, pp. 605–621, Apr. 2006, doi: 10.1177/0021998305055274.

D. Savvas, G. Stefanou, and M. Papadrakakis, “Determination of RVE size for random composites with local

volume fraction variation,” Computer Methods in Applied Mechanics and Engineering, vol. 305, pp. 340–358,

Jun. 2016, doi: 10.1016/j.cma.2016.03.002.

A. R. Melro, P. P. Camanho, and S. T. Pinho, “Generation of random distribution of fibres in long-fibre

reinforced composites,” Composites Science and Technology, vol. 68, no. 9, pp. 2092–2102, Jul. 2008, doi:

1016/j.compscitech.2008.03.013.

V. Romanov, S. V. Lomov, Y. Swolfs, S. Orlova, L. Gorbatikh, and I. Verpoest, “Statistical analysis of real and

simulated fibre arrangements in unidirectional composites,” Composites Science and Technology, vol. 87, pp.

–134, Oct. 2013, doi: 10.1016/j.compscitech.2013.07.030.

G. Requena, G. Fiedler, B. Seiser, P. Degischer, M. Di Michiel, and T. Buslaps, “3D-Quantification of the

distribution of continuous fibres in unidirectionally reinforced composites,” Composites Part A: Applied

Science and Manufacturing, vol. 40, no. 2, pp. 152–163, Feb. 2009, doi: 10.1016/j.compositesa.2008.10.014.

F. Radjai and F. Dubois, Discrete-element modeling of granular materials. Wiley-Iste, 2011. Accessed: May

, 2021. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00691805

B. K. Mishra and R. K. Rajamani, “The discrete element method for the simulation of ball mills,” Applied

Mathematical Modelling, vol. 16, no. 11, pp. 598–604, Nov. 1992, doi: 10.1016/0307-904X(92)90035-2.

S. E. Stapleton, L. Appel, J.-W. Simon, and S. Reese, “Representative volume element for parallel fiber

bundles: Model and size convergence,” Composites Part A: Applied Science and Manufacturing, vol. 87, pp.

–185, Aug. 2016, doi: 10.1016/j.compositesa.2016.04.018.


Refbacks

  • There are currently no refbacks.