Open Access Open Access  Restricted Access Subscription Access

Assessing the Multiaxial Deformation Response of Unidirectional Non-Crimp Fabrics

MEHDI GHAZIMORADI, VALTER CARVELLI, JOHN MONTESANO

Abstract


In this study, the mixed-mode deformation response of a unidirectional non- crimp fabric (UD-NCF) was investigated. Multiaxial in-plane shear-biaxial tension tests were performed using a new multi-branched fabric specimen on a custom multi-axial loading device. Tests were performed with various ratios of deformation along three loading directions to impose combined tension and shear deformation on the fabric specimens. The different loading cases revealed a strong inter-dependency between shear and tensile deformation modes. Observation and measurement of local deformations provided important quantitative and qualitative information to deeply understand the interaction of typical meso- and macro-scale deformations, which can be leveraged during the forming process of liquid composite molded components to reduce shear-induced defects such as wrinkling.


DOI
10.12783/asc36/35914

Full Text:

PDF

References


Trejo E. A. 2020, “Characterizing the deformation response of a u nidirectional non-crimp fabric for

the development of computational draping simulation models,” University of Waterloo.

Schirmaier F. J., K. A. Weidenmann, L. Kärger, F. Henning. 2016 Characterisation of the draping

behaviour of unidirectional non-crimp fabrics (UD-NCF). Compos. Part A Appl. Sci. Manuf., 80:28-

https://doi.org/10.1016/j.compositesa.2015.10.004

Ghazimoradi M., E. A. Trejo, V. Carvelli, C. Butcher, J. Montesano. 2021. “Deformation

characteristics and formability of a tricot-stitched carbon fiber unidirectional non-crimp fabric.

Compos. Part A Appl. Sci. Manuf., 145:106366. https://doi.org/10.1016/j.compositesa.2021.106366

Ghazimoradi M., V. Carvelli, M. C. Marchesi, R. Frassine. 2018. “Mechanical characterization of

tetraxial textiles.” J. Ind. Text., 48(1):3–24. https://doi.org/10.1177/1528083717721920

Ghazimoradi M., V. Carvelli, N. Naouar, P. Boisse. 2019. “Experimental measurements and

numerical modelling of the mechanical behaviour of a glass plain weave composite reinforcement,”

J.Reinf. Plas.t Compos., 39(1–2):45–59. https://doi.org/10.1177/0731684419868846.

Boisse P, N. Hamila, E. Guzman-Maldonado, A. Madeo, G. Hivet, F. dell’Isola. 2017. “The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements andprepregs: a review,” Int. J. Mater. Form., 10:473–92. https://doi.org/10.1007/s12289-016-1294-7.

Boisse P., J. Colmars, N. Hamila, N. Naouar, Q. Steer. 2018. “Bending and wrinkling of compositefiber preforms and prepregs. A review and new developments in the draping simulations,” Compos.Part. B Eng., 141:234–49. https://doi.org/10.1016/j.compositesb.2017.12.061.

Naouar N., G. Hivet G, E. Vidal-Sallé E. 2021. 16 - Mesoscopic approaches for composite reinforcement mechanical behavior. In: Boisse P, editor. Compos. Reinf. Optim. Perform. Second Ed., Woodhead Publishing, pp. 499–536. https://doi.org/10.1016/B978-0-12-819005-0.00016-2.

Naouar N, J. Colmars, P. Boisse. 2020. “Meso-macro FE Modelling of Composite Forming,”Procedia. Manuf., 47:74–9. https://doi.org/10.1016/j.promfg.2020.04.137

Pazmino J., S. Mathieu, V. Carvelli, P. Boisse, S. V. Lomov. 2015. “Numerical modelling of formingof a non-crimp 3D orthogonal weave E-glass composite reinforcement,” Compos. Part A Appl. Sci.Manuf., 72:207–18. https://doi.org/10.1016/j.compositesa.2015.02.013.

Pazmino J., V. Carvelli, S. V. Lomov. 2014. “Formability of a non-crimp 3D orthogonal weave E-glass composite reinforcement,” Compos. Part Appl. Sci. Manuf., 61:76–83.https://doi.org/10.1016/j.compositesa.2014.02.004

Harrison P., F. Abdiwi, Z. Guo, P. Potluri, W. R. Yu. 2012. “Characterising the shear-tensioncoupling and wrinkling behaviour of woven engineering fabrics,” Compos. Part A Appl. Sci. Manuf.,43:903–14. https://doi.org/10.1016/j.compositesa.2012.01.024.

Komeili M., A. S. Milani. 2016. “On effect of shear-tension coupling in forming simulation of wovenfabric reinforcements,” Compos. Part B Eng., 99:17–29.https://doi.org/10.1016/j.compositesb.2016.05.004.

Rashidi A., A. S. Milani. 2018. “A multi-step biaxial bias extension test for wrinkling/de-wrinklingcharacterization of woven fabrics: Towards optimum forming design guidelines,” Mater. Des., 146:273–85. https://doi.org/10.1016/j.matdes.2018.02.075.

Mei M., Y. He, X. Yang, K. Wei, F. Mo. 2020. “Meso/macro scale response of the comingled glasspolypropylene 2-2 twill woven fabric under shear pre-tension coupling,” Compos. Struct.,236:111854. https://doi.org/10.1016/j.compstruct.2020.111854.

Abdiwi F., P. Harrison, W. R. Yu. 2013. “Modelling the Shear-Tension Coupling of WovenEngineering Fabrics,” Adv. Mater. Sci. Eng., 2013:e786769. https://doi.org/10.1155/2013/786769.

Gong Y., D. Yan, Y. Yao, R. Wei, H. Hu, P. Xu. 2017. “An Anisotropic Hyperelastic ConstitutiveModel with Tension–Shear Coupling for Woven Composite Reinforcements,” Int. J. Appl. Mech.,9(6), 1750083. https://doi.org/10.1142/S1758825117500831.

Harrison P. 2012. “Normalisation of biaxial bias extension test results considering shear tensioncoupling,” Compos. Part A Appl. Sci. Manuf., 43:1546–54.https://doi.org/10.1016/j.compositesa.2012.04.014.

Trejo E. A., M. Ghazimoradi, C. Butcher, J. Montesano. 2020. “Assessing strain fields in unbalancedunidirectional non-crimp fabrics,” Compos. Part A Appl. Sci. Manuf., 130.https://doi.org/10.1016/j.compositesa.2019.105758.


Refbacks

  • There are currently no refbacks.