Open Access Open Access  Restricted Access Subscription Access

Multiscale Analysis of Thermo-Mechanical Behavior of Boron Nitride-Reinforced Epoxy Nanocomposites



The effect of size, shape, morphology, and arrangement of micro constituents of Boron Nitrite (BN) nanoplatelet/epoxy composites on their properties were investigated using a multi scale approach that includes Molecular Dynamics (MD) and micromechanics. The thermo-mechanical properties of the composites were evaluated using molecular theory and the analysis showed that the elastic constants of BN/epoxy composites were not severely affected by temperature. Also, the micromechanical analysis of Generalized Method of Cells (GMC) was utilized at higher length scale to evaluate elastic properties of the composites, for different geometries and arrangements of micro constituents. The predicted results of the analysis showed that the size, aspect ratios, morphology, and the arrangements of inclusions in BN/epoxy nanocomposites all have remarkable effect on the mechanical performances of the material systems.


Full Text:



Blasé, X., A., Rubio, S. G. Louie, and M. L. Cohen. 1994. “Stability and Bond Gap Constancy of

Boron Nitride nanotubes,” Europhysics Letters, 28(51): 335-340.

Hernandez, E., C. Goze, P. Bernier, and A. Rubio. 1998. “Elastic Properties of Carbon and BxCyNz

Composite Nanotubes,” Physical Review Letters, 87: 4502.

Watanabe, K., T. Taniguchi, and H. Kanda. 2004. “Direct-Bandgap Properties and Evidence for

Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal,” Nature Materials, 3:404-409

Kim, P., L. Shi, A. Majumdar, and P. L. McEuen. 2001. “Thermal Transport Measurements of

Individual Multiwall Nanotubes,” Physical Review Letters, 80: 215502.

Suryavanshi, A. P., M. F. Yu, J. Wen, C. Tang, and Y. Bando. 2004. “Elastic Modulus and

Resonance Behavior of Boron Nitrides Nanotubes,” Applied. Physics Letters, 84: 2527.

Anees, P., M. C. Valsakumar, and B. K. Panigrahi. 2016. “Effect of Strong Phonon-phonon

Coupling on the Temperature Dependent Structural Stability and Frequency Shift of 2D Hexagonal

Boron Nitride,” Phys. Chem. Chem. Phys., 18:2672.

Plimpton, S. 1995. “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of

Computational Physics, 117(1):1-19,

Lager, J. R., and R. R., June. 1968. “Compressive Strength of boron-epoxy composites,” Journal of

Composites Materials, 3: 48-56.

Pacile, D., J. C. Meyer, C. O. Girit, and A. Zettl. 2008. “Two-Dimensional Phase of Boron Nitride:

Few-Atomic-Layer Sheets and Suspended Membranes,” Applied Physics Letters, 92:133107.

Han, W. Q., L. J Wu, Y. M. Zhu, K. Watanabe, and T. Takiguchi. 2008. “Structure of Chemically

Derived Mono- and Few-Atomic-Layer Boron Nitride Sheets,” Applied Physics Letters, 93:223103.

Zhi, C., Y. Bando, C. Tang, H. Kuwahara, and D. Golberg. 2009. Large-Scale Fabrication of

Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal

and Mechanical Properties,” Advanced Materials, 21:2889-2893.

Littell, J. D., C. R. Ruggeri, R. K. Goldberg, G. D. Roberts, W. A. Arnold, and W. K. Binienda.

“Measurement of Epoxy Resin Tension, Compression, and Shear Stress-Strain Curves Over

a Wide Range of Strain Rates Using Small Test Specimens,” J. of Aeros. Eng., 21:162-173.

Doherty, D. C., B. N. Holmes, P. Leung, and R. B. Ross. 1998. “Polymerization Molecular

Dynamics Simulations. I. Cross-linked Atomistic Models for Poly(methcrylate) Networks,” Comp.

and Theor. Polym. Sci., 891(2):169-178.

.14. Zhao, S. and J. Xue. 2013. “Mechanical Properties of Hybrid Graphene and Hexagonal Boron

Nitride Sheets as Revealed by Molecular Dynamic Simulations,” Journal of Physics D: Applied

Physics, 46, Doi:10.1088/0022.3727/46/13/135303.

Natsuki T., and J. Natsuki. 2017. “The Prediction of Mechanical Properties for Hexagonal Boron

Nitride Nanosheets Using Molecular Mechanics Model,” J. Applied Physics A., 123:283,

Bandyopadhyay A., P. K. Valavala, T. C. Clancy, K. E. Wise, and G. M. Odegard.

”Molecular Modelling of Cross-linked Epoxy Polymers: The Effect of Crosslink Density on

Thermomechanical Properties,” Polymer, 52: 2445-242.

Chunyu, L., A. R. Browning, S. Christensen, and A. Strachan. 2012. “Atomistic Simulations on

Multilayer Graphene Reinforce Epoxy Composites,” Composites: Part A, 43:1293-1300.

Boldrin, L., F. Scarpa, R. Chowdhury, and S. Adhikari. 201l. “Effective Mechanical Properties

of Hexagonal Boron Nitride Nanosheets,” Nanotechnology, 22 (50), URL:

Mirnezhad, M., R. Ansari, and H. Rouhi. 2013. “Mechanical Properties of Multilayer Boron

Nitride with Different Stacking Orders,” Superlattices and Microstructures, 53, 223-231.

Peng, Q., W. Ji, and S. De. 2012. “Mechanical Properties of the Hexagonal Boron Nitride

Monolayer: Ab initio Study,” Computational Materials Science, 56:11-17.

Ooi, N., A. Rairkar, L. Lindsley, and J. B. Adams. 2006. “Electronic Structure and Bonding in

Hexagonal Boron Nitride,” Journal of Physics:Condensed Matter, 18: 97-115.

Ooi, N., V. Rajan, J. Gottlieb, Y. Cathering, and J. B. Adams. 2006. “Structural Properties of

Hexagonal Boron Nitride,” Modelling and Simulation in Materials Science and Engineering, 14

(3): 515-535.

Aluko, O., S. Gowtham, and G. M. Odegard. 2020. “Application of Molecular Dynamics

and Micromechanics to Predict the Mechanical Properties of Boron Nitride-Reinforced Epoxy

Composites,” Presented at 35th American Society of Composite Conference, September

-17, 2020

Aluko, O., S. Gowtham, and G. M. Odegard. 2016. “Molecular Dynamics Model of Graphene

Nanoplatelet in EPON 862/DETDA Polymer,” Presented at 31th American Society of Composite

Conference, September 19-22, 2016.

Aluko, O., S. Gowtham, and G. M. Odegard. 2017. “The Effect of Volume Fraction of Graphene

Nanoplatelet on Fracture Characteristics of Graphene/Epoxy Composite,” Presented at 32th

American Society of Composite Conference, October 22-25, 2017.

Aluko, O., E. J. Pineda, T. M. Ricks, and S. M. Arnold. 2019. “Molecular Dynamics Simulations of

Silicon Carbide, Boron Nitride and Silicon for Ceramic Composite Applications,” NASA/TM—


Barbero, E.J. 2011 “Introduction to Composite Materials Design” 2nd Edition, CRC Press, Taylor

and Francis Group, New York, pp. 51-52.

Paley, M., J. Aboudi. 1992. “Micromechanical Analysis of Composites by the Generalized Cells

Model,” Mech Mater. 14:127-139.

Bednarcyk, B. A., J. Aboudi, S. M. Arnold. 2014. “The Effect of General Statistical Fiber

Misalignment on Predicted Damage Initiation in Composites,” Compos Part B-Eng. 66:97-108.

Aboudi, J., S. M. Arnould, B. A. Bednarcyk. 2013. “Micromechanics of Composite Materials: A

Generalized Multiscale Analysis Approach,” Elsevier, Inc.

Bednarcyk, B. A., S. M. Arnold. MAC/GMC User’s Manual-keywords Manual. NASA/TM 2002;

-212077/Vol 2.


  • There are currently no refbacks.