Open Access Open Access  Restricted Access Subscription Access

A Multifunctional and Reconfigurable Microvascular Composite



Fiber-reinforced polymer (FRP) composites, consisting of stiff/strong fibers embedded within a continuous matrix, are a lightweight structural platform supporting an array of modern applications. Bioinspired vascularization of fiber-composites can augment existing performance with dynamic functionalities via liquid infiltration of the internal micro-fluidic network. Some vascular-enabled capabilities include self-healing to repair delamination damage and active-cooling to prevent thermal degradation. While such attributes have been demonstrated in separate platforms, research investigations that combine functionalities within a single composite have been limited. Here we provide a recent study that highlights a promising pathway for achieving both multifunctional, and reconfigurable behavior in microvascular FRP composites. Specifically, we detail the ability to regulate temperature and modulate electromagnetic signature via fluid substitution within the same serpentine vasculature. Varying microchannel density alters both active-cooling efficiency by water circulation and polarized radio-frequency wave reflection by liquid metal infiltration. We control these bulk property pluralities by widespread vascularization, while minimizing impact on structural performance, and decode the effects of micro-vascular topology on macromechanical behavior. Our in-depth experimental and computational investigation provides a new benchmark for future design optimization and real-world translation of multifunctional and adaptive microvascular composites.


Full Text:



Reece, J.B., L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, and R. B. Jackson.

Campbell Biology (No. s 1309). Boston: Pearson.

Kopylova, V. S., S. E. Boronovskiy, and Y. R. Nartsissov. 2017. “Fundamental Principles of Vascular

Network Topology,” Biochemical Society Transactions, 45(3):839-844.

Guyton, A. and J. Hall. 2005. Textbook of Medical Physiology. Saunders Elsevier, Philadelphia, 11th


Trask, R.S. and I. P. Bond. 2006. “Biomimetic Self-healing of Advanced Composite Structures Using

Hollow Glass Fibres,” Smart Materials and Structures, 15(3):704.

Toohey, K. S., N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White. 2007. “Self-healing Materials

with Microvascular Networks,” Nature Materials, 6(8):581–585.

Blaiszik, B. J., S. L. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, and S. R. White. 2010.

“Self-healing Polymers and Composites,” Annual Review of Materials Research, 40:179–211.

Diesendruck, C. E., N. R. Sottos, J. S. Moore, and S. R. White. 2015. “Biomimetic Self-healing,”

Angewandte Chemie International Edition, 54(36):10428–10447.

Patrick, J. F., M. J. Robb, N. R. Sottos, J. S. Moore, and S. R. White. 2016. “Polymers with

Autonomous Life-cycle Control,” Nature, 540(7633):363–370.

Cohades, A., C. Branfoot, S. Rae, I. Bond, and V. Michaud. 2018. “Progress in Self-healing Fiberreinforced

Polymer Composites,” Advanced Materials Interfaces, 5(17):1800177.

Kozola, B. D., L. A. Shipton, V. K. Natrajan, K. T. Christensen, and S. R. White. 2010.

“Characterization of Active Cooling and Flow Distribution in Microvascular Polymers,” Journal of

Intelligent Material Systems and Structures, 21(12):1147–1156.

Phillips, D. M., M. R. Pierce, and J. W. Baur. 2011. “Mechanical and Thermal Analysis of

Microvascular Networks in Structural Composite Panels.” Composites Part A: Applied Science and

Manufacturing, 42(11):1609–1619.

Coppola, A. M., A. S. Griffin, N. R. Sottos, and S. R. White. 2015. “Retention of Mechanical

Performance of Polymer Matrix Composites Above the Glass Transition Temperature by Vascular

Cooling,” Composites Part A: Applied Science and Manufacturing, 78:412–423.

Pety, S. J., M. H. Y. Tan, A. R. Najafi, P. R. Barnett, P. H. Geubelle, and S. R. White. 2017. “Carbon

Fiber Composites with 2D Microvascular Networks for Battery Cooling,” International Journal of

Heat and Mass Transfer, 115:513–522.

King, A. J., J. F. Patrick, N. R. Sottos, S. R. White, G. H. Huff, and J. T. Bernhard. 2013.

“Microfluidically Switched Frequency-reconfigurable Slot Antennas,” IEEE Antennas and Wireless

Propagation Letters,12:828–831.

Hartl, D., G. Frank, G. Huff, and J. Baur. 2016. “A Liquid Metal-based Structurally Embedded

Vascular Antenna: I. Concept and Multiphysical Modeling,” Smart Materials and Structures,


Song, L., W. Gao, C. O. Chui, and Y. Rahmat-Samii. 2019. “Wideband Frequency Reconfigurable

Patch Antenna with Switchable Slots Based on Liquid Metal and 3-D Printed Microfluidics,” IEEE

Transactions on Antennas and Propagation, 67(5):2886–2895.

Griffin, A. S., H. Pan, J. D. Barrera, G. H. Huff, S. R. White, and N. R. Sottos. 2020. “A

Polarization Reconfigurable Microstrip Patch Antenna Using Liquid Metal Microfluidics,” Smart

Materials and Structures, 29(4):045032.

Rifaie-Graham, O., E. A. Apebende, L. K. Bast, and N. Bruns. 2018. “Self-reporting Fiber-reinforced

Composites that Mimic the Ability of Biological Materials to Sense and Report Damage,” Advanced

Materials, 30(19):1705483.

Luan, C., X. Yao, C. Zhang, J. Fu, and B. Wang. 2020. Integrated Self-monitoring and Self-healing

Continuous Carbon Fiber Reinforced Thermoplastic Structures Using Dual-material Threedimensional

Printing Technology,” Composites Science and Technology, 188:107986.

Saeed, M.-U., Z. Chen, and B. Li. 2015. “Manufacturing Strategies for Microvascular Polymeric

Composites: A Review,” Composites Part A: Applied Science and Manufacturing, 78:327–340.

Qamar, I. P. S., N. R. Sottos, and R. S. Trask. 2020. “Grand Challenges in the Design and

Manufacture of Vascular Self-healing,” Multifunctional Materials, 3(1):013001.

Esser-Kahn, A. P., P. R. Thakre, H. Dong, J. F. Patrick, V. K. Vlasko-Vlasov, N. R. Sottos, J.

S. Moore, and S. R. White. 2011. “Three-dimensional Microvascular Fiber-reinforced Composites,”

Advanced Materials, 23(32):3654–3658.

Patrick, J. F., B. P. Krull, M. Garg, C. L. Mangun, J. S. Moore, N. R. Sottos, and S. R. White. 2017.

“Robust Sacrificial Polymer Templates for 3D Interconnected Microvasculature in Fiber-reinforced

Composites,” Composites Part A: Applied Science and Manufacturing, 100:361–370.

Dickey, M. D. 2017. “Stretchable and Soft Electronics Using Liquid Metals,” Advanced Materials,


McElroy, M. W., A. Lawrie, and I. P. Bond. 2015. “Optimisation of an Air Film Cooled CFRP Panel

with an Embedded Vascular Network,” International Journal of Heat and Mass Transfer, 88:284–

Patrick, J. F., K. R. Hart, B. P. Krull, C. E. Diesendruck, J. S. Moore, S. R. White, and N. R.

Sottos. 2014. “Continuous Self-healing Life Cycle in Vascularized Structural Composites,”

Advanced Materials, 26(25):4302–4308.

Kim, H. K., D. Lee, and S. Lim. 2016. “Wideband-switchable Metamaterial Absorber Using Injected

Liquid Metal,” Scientific Reports, 6:31823.

Lim D., and S. Lim. 2018. “Liquid-metal-fluidically Switchable Metasurface for Broadband and

Polarization-insensitive Absorption,” IEEE Access, 6:40854–40859.

Huff, G. H., H. Pan, D. J. Hartl, G. J. Frank, R. L. Bradford, and J. W. Baur. 2017. “A Physically

Reconfigurable Structurally Embedded Vascular Antenna,” IEEE Transactions on Antennas and

Propagation, 65(5):2282–2288.

Dickey, M. D., R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides. 2008.

“Eutectic Gallium-indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in

Microchannels at Room Temperature,” Advanced Functional Materials, 18(7):1097–1104.

Kontorovich, M. I., V. Y. Petrun’kin, N. A. Yesepinka, and M. I. Astrakhan. 1962. “The

Coefficient of Reflection of a Plane Electromagnetic Wave from a Plane Wire Mesh,” Radio

Engineering and Electronic Physics, 7:222–231.

Shen L. C.. 1987. Applied Electromagnetism. Brooks/Cole.

ASTM International. 2017. ASTM D3039: Standard Test Method for Tensile Properties of Polymer

Matrix Composite Materials.

Sutton, M. A., W. Wolters, W. Peters, W. Ranson, and S. McNeill. 1983. “Determination of

Displacements Using an Improved Digital Correlation Method,” Image and Vision Computing,


Lamberti, L., M.-T. Lin, C. Furlong, C. Sciammarella, P. L. Reu, and M. A. Sutton. 2019.

Advancement of Optical Methods & Digital Image Correlation In Experimental Mechanics, Volume


Osada, T., A. Nakai, and H. Hamada. “Initial Fracture Behavior of Satin Woven Fabric Composites,”

Composite Structures, 61(4):333–339.

Coppola, A. M., L. G. Warpinski, S. P. Murray, N. R. Sottos, and S. R. White. 2016. “Survival

of Actively Cooled Microvascular Polymer Matrix Composites Under Sustained Thermomechanical

Loading,” Composites Part A: Applied Science and Manufacturing, 82:170–179.

W. A. Imbriale, S. S. Gao, and L. Boccia. 2012. Space Antenna Handbook. John Wiley & Sons.

Hodges, R. E., N. Chahat, D. J. Hoppe, and J. D. Vacchione. 2017. “A Deployable High-Gain

Antenna Bound for Mars: Developing a New Folded-panel Reflectarray for the First CubeSat

Mission to Mars,” IEEE Antennas and Propagation Magazine, 59(2):39–49.

Zhang, X.-D., X.-P. Li, Y.-X. Zhou, J. Yang, and J. Liu. 2019. “Vascularized Liquid Metal Cooling

for Thermal Management of kW High Power Laser Diode Array,” Applied Thermal Engineering,


Youn, B., and A. Mills. 1995. “Cooling Panel Optimization for the Active Cooling System of a

Hypersonic Aircraft,” Journal of Thermophysics and Heat transfer, 9(1):136–143.

Gou, J.-J., Y. Chang, Z.-W. Yan, B. Chen, and C.-L. Gong. 2019. “The Design of Thermal

Management System for Hypersonic Launch Vehicles Based on Active Cooling Networks,” Applied

Thermal Engineering, 159:113938.

Ramos-Alvarado, B., P. Li, H. Liu, and A. Hernandez-Guerrero. 2011. “CFD Study of Liquid-cooled

Heat Sinks with Microchannel Flow Field Configurations for Electronics, Fuel Cells, and

Concentrated Solar Cells,” Applied Thermal Engineering, 31(14-15):2494–2507.

Zhang, G., and S. G. Kandlikar. 2012. “A Critical Review of Cooling Techniques in Proton Exchange

Mem-brane Fuel Cell Stacks,” International Journal of Hydrogen Energy, 37(3):2412–2429.

Wang, S., Y. Li, Y.-Z. Li, Y. Mao, Y. Zhang, W. Guo, and M. Zhong. 2017. “A Forced Gas Cooling

Circle Packaging with Liquid Cooling Plate for the Thermal Management of Li-ion Batteries Under

Space Environment,” Applied Thermal Engineering, 123:929–939.

Wu, W., S. Wang, W. Wu, K. Chen, S. Hong, and Y. Lai. 2019. “A Critical Review of Battery

Thermal Performance and Liquid Based Battery Thermal Management,” Energy Conversion and

Management, 182:262–281.

ANSYS. 2018. ANSYS FLUENT v.18.2 - CFD Software — ANSYS.

Pejman, R., S. H. Aboubakr, W. H. Martin, U. Devi, M. H. Y. Tan, J. F. Patrick, and A. R.Najafi.

“Gradient-based Hybrid Topology/Shape Optimization of Bioinspired Microvascular

Composites,” International Journal of Heat and Mass Transfer, 144:118606.

Soghrati, S., A. M. Arag ́on, C. Armando Duarte, and P. H. Geubelle. 2012. “An Interface-enriched

Generalized FEM for Problems with Discontinuous Gradient Fields,” International Journal for

Numerical Methods in Engineering, 89(8):991–1008.


  • There are currently no refbacks.