Open Access Open Access  Restricted Access Subscription Access

Parameterization of ReaxFF Potential of Mg/Al/Si/O Interaction and Investigation of Mechanical Properties for S-Glass

JEJOON YEON, SANJIB C. CHOWDHURY, CHAITANYA M. DAKSHA, DONATO BELMONTE, ADRI VAN DUIN, JOHN W. GILLESPIE, JR.

Abstract


New ReaxFF parameters are developed for the description of Mg/Al/Si/O interaction for the Magnesium Aluminosilicate (MAS) glass structure. The training set contains energy curves from equation of state for various Mg/Al/Si/O crystals, valence angle and bond distance scan, and heat of formation for the Mg/Al/Si/O interactions. A semi-automated Genetic Algorithm assisted by Artificial Neural Network is applied for this parametrization. Validation efforts showed the current ReaxFF parameter set can describe the atomistic structure and property of tectosilicate MAS glass including S-glass. Estimated quasi-static modulus of S-glass structure matches well with experimental value. Analysis shows the key of high modulus of S-glass is numerous Mg-BO (Bridge Oxygen) interactions across the Mg-O-AlSi structure. In addition, atomistic origin of high ductility and progressive failure of S-glass is derived from the reconstruction of the atomic structure, forming Mg-BO-Si interactions that delays fracture formation.


DOI
10.12783/asc36/35858

Full Text:

PDF

References


Wallenberger FT, Watson JC, Li H. Glass Fibers. ASM Handb. Vol. 21 Compos. [Internet]. 2001;21. Available from: www.asminternational.org.

Zachariasen WH. The Atomic Arrangement in Glass. J. Am. Chem. Soc. 1932;54:3841–3851.

Dietzel A von. Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten. Zeitschrift für Elektrochemie und Angew. Phys. Chemie [Internet]. 1942;48:9–23. Available from: https://onlinelibrary.wiley.com/doi/epdf/10.1002/bbpc.19420480104.

Neuville DR, Richet P. Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets. Geochim. Cosmochim. Acta. 1991;55:1011–1019.

Neuville DR. Viscosity, structure and mixing in (Ca, Na) silicate melts. Chem. Geol. 2006;229:28–41.

Morin EI, Wu J, Stebbins JF. Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: The roles of fictive temperature and boron content. Appl. Phys. A Mater. Sci. Process. 2014;116:479–490.

Wu J, Stebbins JF. Effects of cation field strength on the structure of aluminoborosilicate glasses: High-resolution 11B, 27Al and 23Na MAS NMR. J. Non. Cryst. Solids [Internet]. 2009;355:556–562. Available from: http://dx.doi.org/10.1016/j.jnoncrysol.2009.01.025.

Sreenivasan H, Kinnunen P, Adesanya E, et al. Field Strength of Network-Modifying Cation Dictates the Structure of (Na-Mg) Aluminosilicate Glasses. Front. Mater. 2020;7.

Weigel C, Le Losq C, Vialla R, et al. Elastic moduli of XAlSiO4 aluminosilicate glasses: Effects of charge-balancing cations. J. Non. Cryst. Solids. 2016;447:267–272.

Neuville DR, Cormier L, Montouillout V, et al. Structure of Mg- and Mg/Ca aluminosilicate glasses: 27Al NMR and Raman spectroscopy investigations. Am. Mineral. 2008;93:1721–1731.

Kuryaeva RG. The state of magnesium in silicate glasses and melts. Glas. Phys. Chem. 2009;35:378–383.

Bista S, Stebbins JF. The role of modifier cations in network cation coordination increases with pressure in aluminosilicate glasses and melts from 1 to 3 GPa. Am. Mineral. 2017;102:1657–1666.

Lee SK, Stebbins JF. The degree of aluminum avoidance in aluminosilicate glasses. Am. Mineral. 1999;84:937–945.

Duxson P, Provis JL, Lukey GC, et al. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir. 2005;21:3028–3036.

Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 1954;39:92–96.

Bechgaard TK, Scannell G, Huang L, et al. Structure of MgO/CaO sodium aluminosilicate glasses: Raman spectroscopy study. J. Non. Cryst. Solids [Internet]. 2017;470:145–151. Available from: http://dx.doi.org/10.1016/j.jnoncrysol.2017.05.014.

Allu AR, Gaddam A, Ganisetti S, et al. Structure and Crystallization of Alkaline-Earth Aluminosilicate Glasses: Prevention of the Alumina-Avoidance Principle. J. Phys. Chem. B. 2018;122:4737–4747.

Allwardt JR, Stebbins JF, Terasaki H, et al. Effect of structural transitions on properties of high-pressure silicate melts:27 Al NMR, glass densities, and melt viscosities. Am. Mineral. 2007;92:1093–1104.

Pedone A, Malavasi G, Cristina Menziani M, et al. Role of magnesium in soda-lime glasses: Insight into structural, transport, and mechanical properties through computer simulations. J. Phys. Chem. C. 2008;112:11034–11041.

Hahn SH, Van Duin ACT. Surface Reactivity and Leaching of a Sodium Silicate Glass under an Aqueous Environment: A ReaxFF Molecular Dynamics Study. J. Phys. Chem. C. 2019;123:15606–15617.

Fogarty J, Aktulga H, Grama A. A reactive molecular dynamics simulation of the silica-water interface. J. Chem. [Internet]. 2010;132:174704. Available from: http://link.aip.org/link/JCPSA6/v132/i17/p174704.

Yu Y, Wang B, Wang M, et al. Revisiting silica with ReaxFF: Towards improved predictions of glass structure and properties via reactive molecular dynamics. J. Non. Cryst. Solids [Internet]. 2016;443:148–154. Available from: http://dx.doi.org/10.1016/j.jnoncrysol.2016.03.026.

Hahn SH, Rimsza J, Criscenti L, et al. Development of a ReaxFF Reactive Force Field for NaSiO x /Water Systems and Its Application to Sodium and Proton Self-Diffusion. J. Phys. Chem. C. 2018;122:19613–19624.

van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A [Internet]. 2001;105:9396–9409. Available from: http://pubs.acs.org/doi/abs/10.1021/jp004368u.

Buehler MJ, Van Duin ACT, Goddard W a. Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys. Rev. Lett. 2006;96:1–4.

Liang T, Shin YK, Cheng Y-T, et al. Reactive Potentials for Advanced Atomistic Simulations. Annu. Rev. Mater. Res. [Internet]. 2013;43:109–129. Available from: http://www.annualreviews.org/doi/10.1146/annurev-matsci-071312-121610.

Chowdhury SC, Haque BZ (Gama., Gillespie JW. Molecular dynamics simulations of the structure and mechanical properties of silica glass using ReaxFF. J. Mater. Sci. 2016;51:10139–10159.

Chowdhury SC, Gillespie JW. Silica–silane coupling agent interphase properties using molecular dynamics simulations. J. Mater. Sci. 2017;52:12981–12998.

Chowdhury SC, Prosser R, Sirk TW, et al. Glass fiber-epoxy interactions in the presence of silane: A molecular dynamics study. Appl. Surf. Sci. [Internet]. 2021;542:148738. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169433220334978.

Daksha CM, Yeon J, Chowdhury SC, et al. Automated ReaxFF parametrization using machine learning. Comput. Mater. Sci. [Internet]. 2021;187:110107. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092702562030598X.

Duin ACT Van, Strachan A, Stewman S, et al. Reactive Force Field for Silicon and Silicon Oxide Systems. 2003;3803–3811.

Duin ACT Van, Dasgupta S, Lorant F. ReaxFF. 2001;9396–9409.

Nielson KD, Van Duin ACTT, Oxgaard J, et al. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A. 2005;109:493–499.

Narayanan B, Van Duin ACTT, Kappes BB, et al. A reactive force field for lithium-aluminum silicates with applications to eucryptite phases. Model. Simul. Mater. Sci. Eng. [Internet]. 2012;20:15. Available from: http://arxiv.org/abs/1106.3359.

Fogarty JC, Aktulga HM, Grama AY, et al. A reactive molecular dynamics simulation of the silica-water interface. J. Chem. Phys. 2010;132.

Zhu R, Janetzko F, Zhang Y, et al. Characterization of the active site of yeast RNA polymerase II by DFT and ReaxFF calculations. Theor. Chem. Acc. [Internet]. 2008 [cited 2013 Jun 12];120:479–489. Available from: http://link.springer.com/10.1007/s00214-008-0440-9.

Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21.

Dovesi R, Erba A, Orlando R, et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018;8:1–36.

Al M, Al SO, Belmonte D, et al. Ab initio thermodynamic and thermophysical properties of sapphirine end-members in Mg4 Al8Si2 O20-Mg3Al10SiO20. Am. Mineral. 2014;99:1449–1461.

Belmonte D, Ottonello G, Zuccolini MV. Melting of α-Al2O3 and vitrification of the undercooled alumina liquid: Ab initio vibrational calculations and their thermodynamic implications. J. Chem. Phys. 2013;138.

Belmonte D, Ottonello G, Zuccolini MV. Ab initio thermodynamic and thermophysical properties of sapphirine end-members in the join Mg4Al8Si2O20-Mg3Al10SiO20. Am. Mineral. 2014;99:1449–1461.

De La Pierre M, Belmonte D. Ab initio investigation of majorite and pyrope garnets: Lattice dynamics and vibrational spectra. Am. Mineral. 2016;101:162–174.

Belmonte D, Ottonello G, Zuccolini MV, et al. The system MgO-Al 2 O 3 -SiO 2 under pressure: A computational study of melting relations and phase diagrams. Chem. Geol. [Internet]. 2017;461:54–64. Available from: http://dx.doi.org/10.1016/j.chemgeo.2016.11.011.

Nishitani Y, Adams S, Ichikawa K, et al. Evaluation of magnesium ion migration in inorganic oxides by the bond valence site energy method. Solid State Ionics [Internet]. 2018;315:111–115. Available from: https://doi.org/10.1016/j.ssi.2017.11.031.

Chen T, Sai Gautam G, Canepa P. Ionic Transport in Potential Coating Materials for Mg Batteries. Chem. Mater. 2019;31:8087–8099.

Matsui M. A Transferable Interatomic Potential Model for Crystals and Melts in the System CaO-MgO-Al2O3-SiO2. Mineral. Mag. 1994;58A:571–572.

Deng L, Urata S, Takimoto Y, et al. Structural features of sodium silicate glasses from reactive force field-based molecular dynamics simulations. J. Am. Ceram. Soc. 2020;103:1600–1614.

Jiang C, Li K, Zhang J, et al. The effect of CaO(MgO) on the structure and properties of aluminosilicate system by molecular dynamics simulation. J. Mol. Liq. [Internet]. 2018;268:762–769. Available from: https://doi.org/10.1016/j.molliq.2018.07.123.

Jiang C, Li K, Zhang J, et al. Effect of MgO/Al2O3 ratio on the structure and properties of blast furnace slags: A molecular dynamics simulation. J. Non. Cryst. Solids. 2018;502:76–82.

Matsui M. Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2. Phys. Chem. Miner. 1996;23:345–353.

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. [Internet]. 1995;117:1–19. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002199918571039X.

Yeon J, Chowdhury SC, Daksha CM, et al. Development of Mg/Al/Si/O ReaxFF Parameters for Magnesium Aluminosilicate Glass using Artificial Neural Network Assisted Genetic Algorithm. J. Phys. Chem. C. 2021;Under Review.

Pedone A. Properties calculations of silica-based glasses by atomistic simulations techniques: A review. J. Phys. Chem. C. 2009;113:20773–20784.

Guignard M, Cormier L. Environments of Mg and Al in MgO-Al2O3-SiO2 glasses: A study coupling neutron and X-ray diffraction and Reverse Monte Carlo modeling. Chem. Geol. 2008;256:111–118.

Cormier L, Calas G, Gaskell PH. Cationic environment in silicate glasses studied by neutron diffraction with isotopic substitution. Chem. Geol. 2001;174:349–363.

Wright AC. The comparison of molecular dynamics simulations with diffraction experiments. J. Non. Cryst. Solids. 1993;159:264–268.

Greaves GN, Fontaine A, Lagarde P, et al. Local structure of silicate glasses. Nature. 1981;293:611–616.

Xiang Y, Du J, Smedskjaer MM, et al. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations. J. Chem. Phys. 2013;139.

Zirl DM, Garofalini SH. Structure of Sodium Aluminosilicate Glasses. J. Am. Ceram. Soc. [Internet]. 1990;73:2848–2856. Available from: http://arxiv.org/abs/1011.1669.

McKeown DA, Waychunas GA, Brown GE. Exafs and xanes study of the local coordination environment of sodium in a series of silica-rich glasses and selected minerals within the Na2OAl2O3SiO2 system. J. Non. Cryst. Solids. 1985;74:325–348.

Zhou R ‐S, Snyder RL. Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta Crystallogr. Sect. B. 1991;47:617–630.

Ishizawa N, Miyata T, Minato I, et al. A structural investigation of α-Al2O3 at 2170 K. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1980;36:228–230.

Kohara S, Akola J, Morita H, et al. Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses. Proc. Natl. Acad. Sci. U. S. A. 2011;108:14780–14785.

Gagné OC, Hawthorne FC. Bond-length distributions for ions bonded to oxygen: Alkali and alkaline-earth metals. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016;72:602–625.

Cormier L, Ghaleb D, Neuville DR, et al. Chemical dependence of network topology of calcium aluminosilicate glasses: A computer simulation study. J. Non. Cryst. Solids. 2003;332:255–270.

Du J, Cormack AN. The medium range structure of sodium silicate glasses: A molecular dynamics simulation. J. Non. Cryst. Solids. 2004;349:66–79.

MOZZI RL, WARREN BE, Mozzi R, et al. The structure of vitreous silica. J. Appl. Crystallogr. [Internet]. 1969 [cited 2013 May 3];2:164–172. Available from: http://scripts.iucr.org/cgi-bin/paper?S0021889869006868.


Refbacks

  • There are currently no refbacks.