

Fracture Simulation in Polymer Nanocomposites Using Molecular Dynamics
Abstract
10.12783/asc36/35857
References
Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P.E., Liu, Z., Gong, Y., Zhang, J., Zhang, X. and Ajayan, P.M., 2014. “Fracture toughness of graphene”. Nature communications, 5, p.3782.
Pugno, N.M. and Ruoff, R.S., 2004. Quantized fracture mechanics. Philosophical Magazine, 84(27), pp.2829-2845.
Gao, H., Ji, B., Jäger, I.L., Arzt, E. and Fratzl, P., 2003. Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the national Academy of Sciences, 100(10), pp.5597-5600.
Dewapriya, M.A.N., Rajapakse, R.K.N.D. and Phani, A.S., 2014. Atomistic and continuum modelling of temperature-dependent fracture of graphene. International Journal of Fracture, 187(2), pp.199-212.
Wang, L., Zhang, Z. and Han, X., 2013. In situ experimental mechanics of nanomaterials at the atomic scale. NPG Asia Materials, 5(2), p.e40.
Khare, R., Mielke, S.L., Paci, J.T., Zhang, S., Ballarini, R., Schatz, G.C. and Belytschko, T., 2007. Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Physical Review B, 75(7), p.075412.
Cheng, S.H. and Sun, C.T., 2013. Size-dependent fracture toughness of nanoscale structures: Crack-tip stress approach in molecular dynamics. Journal of Nanomechanics and Micromechanics, 4(4), p.A4014001.
Roy, S., Ryan, J., Webster, S. and Nepal, D., 2017. A Review of In Situ Mechanical Characterization of Polymer Nanocomposites: Prospect and Challenges. Applied Mechanics Reviews, 69(5), p.050802.
Eringen, A.C. and Edelen, D.G.B., 1972. On nonlocal elasticity. International Journal of Engineering Science, 10(3), pp.233-248.
Allegri, G. and Scarpa, F.L., 2014. On the asymptotic crack-tip stress fields in nonlocal orthotropic elasticity. International Journal of Solids and Structures, 51(2), pp.504-515.
Odegard, G.M., Clancy, T.C. and Gates, T.S., 2005. Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer, 46(2), pp.553-562.
Jones, R.E., Zimmerman, J.A., Oswald, J. and Belytschko, T., 2010. An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields. Journal of Physics: Condensed Matter, 23(1), p.015002.
Roy, S. and Nair, A., 2011. Concurrent multi-scale modeling of nano-particle reinforced polymers using statistical coupling of MD and GIMPM. In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t (p. 1922).
Roy, S. and Akepati, A., 2014. Multi-scale Modeling of Failure in Nano-Particle Reinforced Polymers Using the Atomistic J-Integral. In 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference (p. 0106).
Roy, S. and Kumar, A., 2018. Modeling of toughness enhancement mechanisms in graphene nanocomposites. Mechanics of Advanced Materials and Structures, 25(14), pp.1197-1204.
Mielke, S.L., Belytschko, T. and Schatz, G.C., 2007. Nanoscale fracture mechanics. Annu. Rev. Phys. Chem., 58, pp.185-209.
Weiner, J.H., 2012. Statistical mechanics of elasticity. Courier Corporation.
Rice, J.R., 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of applied mechanics, 35(2), pp.379-386.
Begley, J.A. and Landes, J.D., 1972. The J integral as a fracture criterion. In Fracture Toughness: Part II. ASTM International.
Mindess, S., Lawrence, F.V. and Kesler, C.E., 1977. The J-integral as a fracture criterion for fiber reinforced concrete. Cement and Concrete Research, 7(6), pp.731-742.
Jones, R.E. and Zimmerman, J.A., 2010. The construction and application of an atomistic J-integral via Hardy estimates of continuum fields. Journal of the Mechanics and Physics of Solids, 58(9), pp.1318-1337.
Eshelby, J.D., 1975. The elastic energy-momentum tensor. Journal of elasticity, 5(3-4), pp.321-335.
Inoue, H., Akahoshi, Y. and Harada, S., 1994. A fracture parameter for Molecular Dynamics method. International journal of fracture, 66(4), pp.R77-R81.
Jin, Z.H. and Sun, C.T., 2004. On J-integral and potential energy variation. International journal of fracture, 126(1), pp.L19-L24.
Hardy, R.J., 1982. Formulas for determining local properties in molecular‐dynamics simulations: Shock waves. The Journal of Chemical Physics, 76(1), pp.622-628.
Nakatani, K., Nakatani, A., Sugiyama, Y. and Kitagawa, H., 2000. Molecular dynamics study on mechanical properties and fracture in amorphous metal. AIAA journal, 38(4), pp.695-701.
Xu, Y.G., Behdinan, K. and Fawaz, Z., 2004. Molecular dynamics calculation of the J-integral fracture criterion for nano-sized crystals. International journal of fracture, 130(2), pp.571-583.
Latapie, A. and Farkas, D., 2004. Molecular dynamics investigation of the fracture behavior of nanocrystalline α-Fe. Physical Review B, 69(13), p.134110.
Roy, S. and Akepati, A., 2015. A Methodology for the Prediction of Fracture Properties in Polymer Nanocomposites. Advanced Computational Nanomechanics, p.175.
Roy, S. and Roy, A., A Computational Investigation of Length-Scale Effects in the Fracture Behaviour of a Graphene Sheet using the Atomistic J-Integral, Engineering Fracture Mechanics, Vol. 207, pp. 165-180 (2019).
Zhang, P., L. Ma, F. Fan, Z. Zeng, C. Peng, P. E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, P. M. Ajayan, T. Zhu, and J. Lou, Fracture Toughness of Graphene, Nature Communications, Vol. 5, Article number: 3782 (2014).
Gao, H., and S. Chen, Flaw Tolerance in a Thin Strip Under Tension, Journal of Applied Mechanics, Vol. 72, no. 5, pp. 732-737 (2005).
Cheng, S., and C. T. Sun, Size-Dependent Fracture Toughness of Nanoscale Structures: Crack-Tip Stress Approach in Molecular Dynamics, J. Nanomech. Micromech., Vol. 4, no. 4, pp. A4014001 (2014).
Refbacks
- There are currently no refbacks.