Open Access Open Access  Restricted Access Subscription Access

Molecular Dynamics Simulation of Polybenzoxazine Resin for Process Modeling



In this work, Molecular Dynamics (MD) simulations are performed to predict the physical properties (gelation point, mass density, volumetric shrinkage) and mechanical properties (Bulk modulus, Shear modulus, Young’s Modulus, Poisson’s ratio) of a PolyBenzoxazine (PBZ) resin system as a function of crosslinking density. The molecular models are developed using the Reactive Interface Force Field (IFF-R). The results obtained from MD are in good agreement with the experimental data.


Full Text:



Ruiz, E. and F. Trochu. 2005. “Numerical analysis of cure temperature and internal residual stresses in thin and thick parts,” Compos. Part A-Appl S.,36:806-826.

Nelson, R. H. and D. S. Cairns. 1989. “Prediction of Dimensional Changes in Composite Laminates during Cure,” presented at the 34th International SAMPE Symposium and Exhibition, 34(2): 2397-2410.

White, S. R. and Y. K. Kim. 1998. “Process-induced residual stresses analysis of AS4/3501-6 composite material,” Mech. Compos. Mater. St., 5:153–186. 4. Rucigaj, A., Alic, B., Krajnc, M., & Sebenik, U. (2015). “Curing of bisphenol A-aniline based benzoxazine using phenolic, amino and mercapto accelerators,” Express Polymer Letters, 9(7), 647–657. doi:10.3144/expresspolymlett.2015.60.

Li, C.; Strachan, A. 2015. “Molecular scale simulations on thermoset polymers: A review,” J. Polym. Sci., Part B: Polym. Phys. 2015, 53 (2), 103– 122, DOI: 10.1002/polb.23489.

Heinz, H., T. Lin, R. K. Mishra, and F. S. Emami. 2013. “Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field,” Langmuir., 29(6):1754-1765.

Dharmawardhana, C. C., K. Kanhaiya, T. Lin, A. Garley, M. R. Knecht, J. Zhou, J. Miao, and H. Heinz. 2017. “Reliable computational design of biological-inorganic materials to the large nanometer scale using Interface-FF,” Molecular Simulation., 43(13-16):1394-1405.

Pramanik, C., et al., 2017. “Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences,” ACS nano., 11(12):12805-12816.

Gissinger, J. R., B. D. Jensen, and K. E. Wise. 2017. “Modeling chemical reactions in classical molecular dynamics simulations,” Polymer., 128:211-217.

Tack, Jeremy L., and David M. Ford. “Thermodynamic and Mechanical Properties of Epoxy Resin Dgebf Crosslinked with Detda by Molecular Dynamics,” Journal of Molecular Graphics and Modelling 26, 1269-75.

Malvern, L.E.,Introduction to the Mechanics of a Continuous Medium. 1969, Upper Saddle River, NJ:Prentice-Hall,Inc.

Saiev, S., Bonnaud, L., Dubois, P., Beljonne, D., & Lazzaroni, R. (2017). “Modeling the formation and thermomechanical properties of polybenzoxazine thermosets,” Polymer Chemistry, 8(38), 5988–5999. doi:10.1039/c7py00995j.

Varshney,V., S. S. Patnaik, A. K. Roy, and B. L. Farmer. 2008. “A molecular Dynamics Study of Epoxy-Based Networks: Cross-Linking Procedure and Prediction of Molecular and Material Properies,” Macromolecules, 41:6837-6842.

Plimpton, S., “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Computational Physics, 1995. 117: p. 1-19.

Patil,S., Shah,S., Deshpande,P., Kashmari,K., Olaya,M., Odegard,G., Marianna,M.2020.“Multi-scale approach to Predict Curing-Induced Residual Stresses in an Epoxy System” presented at Proceedings of the American Society for Composites-Thirty-fifth Technical Conference.

Deshpande,P., Shah,S., Patil,S., Kashmari,K., Olaya,M., Odegard,G., Marianna,M.2020.“Multiscale Modelling of the cure process in thermoset polymers using ICME” presented at Proceedings of the American Society for Composites-Thirty-fifth Technical Conference.


  • There are currently no refbacks.