

Optimization of Process Parameters During Co-Cure of Honeycomb Sandwich Structures
Abstract
10.12783/asc36/35842
References
N. N. Kermani, P. Simacek, and S. G. Advani, “A Bond-line Porosity Model that
Integrates Fillet Shape and Prepreg Facesheet Consolidation during Equilibrated
Co-cure of Sandwich Composite Structures,” Compos. Part A Appl. Sci. Manuf., p.
, 2020. https://doi.org/10.1016/j.compositesa.2020.106071
A. S. Herrmann, P. C. Zahlen, and I. Zuardy, “Sandwich structures technology in
commercial aviation,” in Sandwich structures 7: Advancing with sandwich
structures and materials, Springer, 2005, pp. 13–26.
J. R. Vinson, “Sandwich structures: past, present, and future,” in Sandwich
structures 7: advancing with sandwich structures and materials, Springer, 2005, pp.
–12. https://doi.org/10.1007/1-4020-3848-8_1
F. C. Campbell, “Adhesive Bonding and Integrally Cocured Structure: A Way to
Reduce Assembly Costs through Parts Integration” Manuf. Process. Adv. Compos.
Elsevier Sci. Amsterdam, Netherlands, pp. 241–301, 2004.
M. Anders, D. Zebrine, T. Centea, and S. Nutt, “In situ observations and pressure
measurements for autoclave co-cure of honeycomb core sandwich structures,” J.
Manuf. Sci. Eng., vol. 139, no. 11, 2017. https://doi.org/10.1115/1.4037432
M. Anders, D. Zebrine, T. Centea, and S. R. Nutt, “Process diagnostics for co-cure
of sandwich structures using in situ visualization,” Compos. Part A Appl. Sci.
Manuf., vol. 116, pp. 24–35, 2019. https://doi.org/10.1016/j.
compositesa.2018.09.029
P. Šimáček and S. G. Advani, “A continuum approach for consolidation modeling
in composites processing,” Compos. Sci. Technol., vol. 186, p. 107892, 2020.
https://doi.org/10.1016/j.compscitech.2019.107892
N. N. Kermani, P. Simacek, and S. G. Advani, “Porosity predictions during co-cure
of honeycomb core prepreg sandwich structures,” Compos. Part A Appl. Sci.
Manuf., vol. 132, p. 105824, 2020.
https://doi.org/10.1016/j.compositesa.2020.105824
J. Kratz and P. Hubert, “Vacuum bag only co-bonding prepreg skins to aramid
honeycomb core. Part I. Model and material properties for core pressure during
processing,” Compos. Part A Appl. Sci. Manuf., vol. 72, pp. 228–238, 2015.
https://doi.org/10.1016/j.compositesa.2014.11.026
J. Kratz and P. Hubert, “Vacuum-bag-only co-bonding prepreg skins to aramid
honeycomb core. Part II. In-situ core pressure response using embedded sensors,”
Compos. Part A Appl. Sci. Manuf., vol. 72, pp. 219–227, 2015.
https://doi.org/10.1016/j.compositesa.2014.11.030
T. Palit, T. Centea, M. Anders, D. Zebrine, and S. Nutt, “Permeability of co-cured
honeycomb sandwich skins: effect of gas transport during processing,” Adv. Manuf.
Polym. Compos. Sci., vol. 6, no. 3, pp. 142–153, 2020.
https://doi.org/10.1080/20550340.2020.1802685
N. N. Kermani, P. Simacek, and S. G. Advani, “A simple analysis tool to simulate
the co-cure of honeycomb core composite sandwich structures,” Int. SAMPE Tech.
Conf., vol. 2019-May, 2019. https://doi.org/10.33599/nasampe/s.19.1432
H.-M. Gutmann, “A Radial Basis Function Method for Global Optimization,” J.
Glob. Optim., vol. 19, no. 3, pp. 201–227, 2001.
https://doi.org/10.1023/A:1011255519438
T. Centea, P. Simacek, M. Anders, N. N. Kermani, D. Zebrine, and S. Advani,
“Understanding and modeling the co-cure of honeycomb core sandwich structures,”
in International SAMPE Technical Conference, 2019.
https://doi.org/10.33599/nasampe/s.19.1431
D. Van Ee and A. Poursartip, “NCAMP Hexply Material Properties Database for
use with COMPRO CCA and Raven,” Natl. Cent. Adv. Mater. Perform., p. 141,
T. Centea, D. Zebrine, M. Anders, C. Elkin, and S. Nutt, “Manufacturing of
honeycomb core sandwich structures: Film adhesive behavior versus cure pressure
and temperature,” CAMX 2016 - Compos. Adv. Mater. Expo, 2016.
Refbacks
- There are currently no refbacks.