Open Access Open Access  Restricted Access Subscription Access

Using Data Science to Evaluate Nano-Reinforced Epoxy Surfaces

JONATHAN THEIM, DANIEL P. COLE, UTKARSH DUBEY, ASHUTOSH SRIVASTAVA, CHOWDHURY ASHRAF, TODD C. HENRY, CHARLES E. BAKIS, ANIRUDDH YASHISTH

Abstract


Toughened composites reinforced with nanofillers show improved mechanical performance such as increased abrasion resistance, fracture toughness, and fracture energy. The degree of these improvements is influenced by the degree of dispersion of the nanofillers which can be analyzed using force microscopy (AFM), a technique that allows for mapping the local height and elastic modulus of a surface. However, current AFM apparatuses can only measure a narrow range of moduli according to the type of tip, which complicates the full-field measurement of moduli in nanocomposites with nanosilica (~72 GPa) embedded in epoxy (0.1 – 5 GPa). Moreover, height mapping can only visualize filler particles exposed at the surface. These limitations make it challenging to determine the 3D location of nanoparticles near the surface of a composite. To overcome these limitations of conventional AFM, we used a combination of data science, micromechanics, and experimental data from AFM to locate the centroidal position of nanosilica (NS) particles relative to the surrounding epoxy surface. Using finite element simulations, a theoretical dataset of modulus values as a function of particle position relative to the epoxy surface was created as a training set. Bayesian optimization determines the “best” particle position that results in minimum error between simulated and experimental modulus contours. The algorithm returns the 3D position of the fully or partially embedded NS particle relative to the epoxy surface. The algorithm has shown the ability to partially produce simulated modulus contours that resemble the experimental modulus contours.


DOI
10.12783/asc36/35815

Full Text:

PDF

References


Cantwell, W.J., and J. Morton. Sep. 1991. “The Impact Resistance of Composite Materials

— a Review,” Composites, 22(5):347–362, doi: 10.1016/0010-4361(91)90549-V.

Chen, Y., S. Zhou, H. Yang, and L. Wu. 2005. “Structure and Properties of

Polyurethane/nNnosilica Composites,” J. Appl. Polym. Sci., 95(5):1032–1039, doi:

1002/app.21180.

Domun, N., H. Hadavinia, T. Zhang, T. Sainsbury, G. H. Liaghat, and S. Vahid. 2015.

“Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials – a

review of the current status,” Nanoscale, 7(23): 10294–10329, doi: 10.1039/C5NR01354B.

Zamanian, M., M. Mortezaei, B. Salehnia, and J. E. Jam. 2013. “Fracture Toughness of

Epoxy Polymer Modified with Nanosilica Particles: Particle Size Effect,” Eng. Fract. Mech.,

(1): 193–206, doi: 10.1016/j.engfracmech.2012.10.027.

Vashisth, A., C. E. Bakis, C. R. Ruggeri, T. C. Henry, and G. D. Roberts. 2018. “Ballistic

Impact Response of Carbon/Epoxy Tubes with Variable Nanosilica Content,” J. Compos.

Mater., 52(12): 1589–1604, doi: 10.1177/0021998317728461.

Hackett, S. C., J. M. Nelson, A. M. Hine, P. Sedgwick, R. H. Lowe, D. P. Goetz, and W. J.

Schultz. 2010. “Improved Carbon Fiber Composite Compression Strength and Shear

Stiffness Through Matrix Modification with Nanosilica,” in Proc. 25th Tech. Conf. Am. Soc.

Composites.

Vashisth, A., and C. E. Bakis. 2016. “Characterization of Nanosilica Filled Bis F Epoxide

with Diamino Diphenyl Sulfone Curing Agents,” in Proc. 31st Tech. Conf.. Am. Soc.

Composites.

Khare, H. S., and D. L. Burris. 2010. “A Quantitative Method for Measuring Nanocomposite

Dispersion,” Polymer. 51(3): 719–729, doi: 10.1016/j.polymer.2009.12.031.

Zhang, M. Q. M. Z. Rong, H. B. Zhang, and K. Friedrich. 2003. “Mechanical Properties of

Low Nano-Silica Filled High Density Polyethylene Composites,” Polym. Eng. Sci., 43(2).

Vashisth, A., T. C. Henry, and C. E. Bakis. 2018. “Quantitative Microscopic Investigation of

Mode I Fracture Surfaces of Nanosilica-Filled Epoxies,” in Proc. 33rd Tech. Conf. Am. Soc.

Composites.

Pinto, Amaro, and Bernardo. Jan. 2020. “Experimental Study on the Surface Properties of

Nanoalumina-Filled Epoxy Resin Nanocomposites,” Appl. Sci.,10(3):733, doi:

3390/app10030733.

López-Ibáñez, M., T. Stützle, and M. Dorigo. 2018. “Ant Colony Optimization: A

Component-Wise Overview,” in Handbook of Heuristics, 1–2: 371–407.

Kirkpatric S., C. D. Gelatt, M. P. Vecchi. 13 May 1983. “Optimization by Simulated

Annealing,” Science, 220(4598): 671–680, doi:10.1.1.123.7607

Vikhar, P. A. 2016. “Evolutionary Algorithms: A Critical Review and its Future Prospects,”

in Proc. 2016 Int. Conf. Glob. Trends Signal Process. Inf. Comput. Commun (ICGTSPICC)

pp. 261–265, IEEE, 2017, doi: 10.1109/ICGTSPICC.2016.7955308.

Brochu, E., V. M. Cora, and N. de Freitas. Dec. 14, 2010. “A Tutorial on Bayesian

Optimization of Expensive Cost Functions, with Application to Active User Modeling and

Hierarchical Reinforcement Learning,” [Online]. Available: http://arxiv.org/abs/1012.2599.

Pirot, G., T. Krityakierne, D. Ginsbourger, and P. Renard. 2019. “Contaminant Source

Localization Via Bayesian Global Optimization,” Hydrol. Earth Syst. Sci., 23(1): 351–369,

, doi: 10.5194/hess-23-351-2019.

Garnett, R., M. A. Osborne, and S. J. Roberts. 2010. “Bayesian Optimization for Sensor Set

Selection,” Proc. 9th ACM/IEEE Int. Conf. Inf. Process. Sens. Networks, IPSN ’10, pp.

–219, doi: 10.1145/1791212.1791238.

Vashisth, A. and C. E. Bakis. 2019. “Multiscale Characterization and Modeling of

Nanosilica-Reinforced Filament Wound Carbon/Epoxy Composite,” Mater. Perform.

Charact., 8(1): 1–21.

Chen, A., W. Mu, and Y. Chen. 2014. “Compressive Elastic Moduli and Polishing

Performance of Non-Rigid Core/Shell Structured PS/SiO2 Composite Abrasives Evaluated

by AFM,” Appl. Surf. Sci., 290: 433–439, doi: 10.1016/j.apsusc.2013.11.100.

Hertz, H. and P. Lenard. 1898. “On the Contact of Rigid Elastic Solids and on Hardness,”

Misc. Pap. Chapter VI, pp. 163–183.

Do, M. N., and M. Vetterli. 2002 “Wavelet-based texture retrieval using generalized

Gaussian density and Kullback-Leibler distance,” IEEE Trans. Image Process., 11(2):146–

doi: 10.1109/83.982822.


Refbacks

  • There are currently no refbacks.