Open Access Open Access  Restricted Access Subscription Access

A Unique Approach to Experimental Characterization of a Thermosetting Polymer Matrix for ICME Frameworks

MICHAEL N. OLAYA, SAGAR PATIL, GREGORY M. ODEGARD, MARIANNA MAIARÙ

Abstract


A novel approach for characterization of thermosetting epoxy resins as a function of the degree of cure is presented. Density, cure kinetics, tensile strength, and Young’s modulus are experimentally characterized across four mixing ratios of DGEBF/DETDA epoxy. Dynamic differential scanning calorimetry (DSC) is used to characterize parameters for a Prout-Thompkins kinetic model unique to each mixing ratio case through a data fitting procedure. Tensile strength and Young’s modulus are then characterized using stress-strain data extracted from quasi-static, uniaxial tension tests at room temperature. Strains are measured with the 2-D digital image correlation (DIC) optical strain measurement technique. Strength tends to increase as amine content use in the formulation increases. The converse trend is observed for Young’s modulus. Density measurements also reveal an inverse relationship with amine content.


DOI
10.12783/asc36/35814

Full Text:

PDF

References


N. Ersoy and O. Vardar, “Measurement of Residual Stresses in Layered

Composites by Compliance Method,” Journal of Composite Materials, vol. 34,

no. 7, pp. 575–598, Apr. 2000, doi: 10.1177/002199830003400703.

M. Maiarù, “Effect of uncertainty in matrix fracture properties on the transverse

strength of fiber reinforced polymer matrix composites,” 2018. doi:

2514/6.2018-1901.

M. Maiarù, R. J. D’Mello, and A. M. Waas, “Characterization of intralaminar

strengths of virtually cured polymer matrix composites,” Composites Part B:

Engineering, vol. 149, pp. 285–295, Sep. 2018, doi:

1016/j.compositesb.2018.02.018.

R. J. D’Mello, M. Maiarù, and A. M. Waas, “Effect of the curing process on the

transverse tensile strength of fiber-reinforced polymer matrix lamina using

micromechanics computations,” Integrating Materials, vol. 4, no. 1, pp. 119–

, Dec. 2015, doi: 10.1186/s40192-015-0035-y.

H. T. Hahn, “Residual Stresses in Polymer Matrix Composite Laminates,”

Journal of Composite Materials, vol. 10, no. 4, pp. 266–278, Oct. 1976, doi:

1177/002199837601000401.

P. Naghipour et al., “Multiscale static analysis of notched and unnotched

laminates using the generalized method of cells,” Journal of Composite

Materials, vol. 51, no. 10, pp. 1433–1454, May 2017, doi:

1177/0021998316651708.

C. Heinrich, M. Aldridge, A. S. Wineman, J. Kieffer, A. M. Waas, and K. W.

Shahwan, “The role of curing stresses in subsequent response, damage and

failure of textile polymer composites,” Journal of the Mechanics and Physics

of Solids, vol. 61, no. 5, pp. 1241–1264, May 2013, doi:

1016/j.jmps.2012.12.005.

C. Heinrich, M. Aldridge, A. S. Wineman, J. Kieffer, A. M. Waas, and K. W.

Shahwan, “Generation of heat and stress during the cure of polymers used in

fiber composites,” International Journal of Engineering Science, vol. 53, pp.

–111, Apr. 2012, doi: 10.1016/j.ijengsci.2011.12.004.

A. C. Loos and G. S. Springer, “Curing of Epoxy Matrix Composites,” Journal

of Composite Materials, vol. 17, no. 2, pp. 135–169, Mar. 1983, doi:

https://doi.org/10.1177/002199838301700204.

R. Shanku, J. G. Vaughan, and J. A. Roux, “Rheological characteristics and cure

kinetics of EPON 862/W epoxy used in pultrusion,” ADVANCES IN POLYMER

TECHNOLOGY, vol. 16, no. 4, p. 15.

S. Shah et al., “Quantification of Thermoset Composite Microstructures for

Process Modeling,” presented at the AIAA Scitech 2021 Forum, VIRTUAL

EVENT, Jan. 2021. doi: 10.2514/6.2021-1774.

S. Shah et al., “In-Situ Characterization of Polymer Matrix Composites and

Progressive Damage Analysis of Virtually Reconstructed Microstructures,”

presented at the American Society for Composites 2020, Sep. 2020. doi:

12783/asc35/34906.

X. Liu, D. Furrer, J. Kosters, and J. Holmes, “NASA’s 2040 Vision Roadmap

Study: A Framework for Integrated Computational Materials Engineering

(ICME),” presented at the American Society for Composites 2018, Nov. 2018.

doi: 10.12783/asc33/25911.

S. Patil et al., “Multi-scale Approach to Predict Cure-Induced Residual Stresses

in an Epoxy System,” presented at the American Society for Composites 2020,

Sep. 2020. doi: 10.12783/asc35/34890.

P. P. Deshpande et al., “Multiscale Modelling of the Cure Process in Thermoset

Polymers Using ICME,” presented at the American Society for Composites

, Sep. 2020. doi: 10.12783/asc35/34889.

S. Shah et al., “Multiscale Modeling for Virtual Manufacturing of Thermoset

Composites,” presented at the AIAA Scitech 2020 Forum, Orlando, FL, Jan.

doi: 10.2514/6.2020-0882.

Y. A. Msallem, F. Jacquemin, and A. Poitou, “Residual stresses formation

during the manufacturing process of epoxy matrix composites: resin yield stress

and anisotropic chemical shrinkage,” Int J Mater Form, vol. 3, no. S2, pp. 1363–

, Sep. 2010, doi: 10.1007/s12289-010-0688-1.

Y. Abou Msallem, F. Jacquemin, N. Boyard, A. Poitou, D. Delaunay, and S.

Chatel, “Material characterization and residual stresses simulation during the

manufacturing process of epoxy matrix composites,” Composites Part A:

Applied Science and Manufacturing, vol. 41, no. 1, pp. 108–115, Jan. 2010, doi:

1016/j.compositesa.2009.09.025.

S. Shah, M. Hashim, A. Amirkhizi, C. Hansen, and M. Maiarù, “Mechanical

property enhancement prediction of matrix materials for wind turbine blades,”

Anaheim, CA, Sep. 2019.

D. J. O’Brien, P. T. Mather, and S. R. White, “Viscoelastic Properties of an

Epoxy Resin during Cure,” j compos mater, vol. 35, no. 10, pp. 883–904, May

, doi: 10.1177/002199801772662442.

E. Ruiz and F. Trochu, “Thermomechanical Properties during Cure of Glass-

Polyester RTM Composites: Elastic and Viscoelastic Modeling,” Journal of

Composite Materials, vol. 39, no. 10, pp. 881–916, May 2005, doi:

1177/0021998305048732.

L. Khoun, T. Centea, and P. Hubert, “Characterization Methodology of

Thermoset Resins for the Processing of Composite Materials — Case Study:

CYCOM 890RTM Epoxy Resin,” Journal of Composite Materials, vol. 44, no.

, pp. 1397–1415, Jun. 2010, doi: 10.1177/0021998309353960.

D. J. O’Brien and S. R. White, “Cure-Dependent Creep Compliance of an

Epoxy Resin,” p. 9, Dec. 1998.

F. Meyer, G. Sanz, A. Eceiza, I. Mondragon, and J. Mijović, “The effect of

stoichiometry and thermal history during cure on structure and properties of

epoxy networks,” Polymer, vol. 36, no. 7, pp. 1407–1414, Mar. 1995, doi:

1016/0032-3861(95)95918-Q.

Y. F. Li et al., “Effects of epoxy/hardener stoichiometry on structures and

properties of a diethanolamine-cured epoxy encapsulant,” IOP Conf. Ser.:

Mater. Sci. Eng., vol. 137, p. 012012, Jul. 2016, doi: 10.1088/1757-

X/137/1/012012.

R. Rahul and R. Kitey, “Effect of cross-linking on dynamic mechanical and

fracture behavior of epoxy variants,” Composites Part B: Engineering, vol. 85,

pp. 336–342, Feb. 2016, doi: 10.1016/j.compositesb.2015.09.017.

C. Heinrich, “The Influence of the Curing Process on the Response of Textile

Composites,” p. 227.

“Product Bulletin: EPIKOTE Resin 862/EPIKURE Curing Agent W System,”

Resolution Performance Products, SC:1183, 2001.

R. Hardis, J. L. P. Jessop, F. E. Peters, and M. R. Kessler, “Cure kinetics

characterization and monitoring of an epoxy resin using DSC, Raman

spectroscopy, and DEA,” Composites Part A: Applied Science and

Manufacturing, vol. 49, pp. 100–108, Jun. 2013, doi:

1016/j.compositesa.2013.01.021.

M. E. Brown, “The Prout-Tompkins rate equation in solid-state kinetics,”

Thermochimica Acta, vol. 300, no. 1–2, pp. 93–106, Oct. 1997, doi:

1016/S0040-6031(96)03119-X.

Woo Il Lee, A. C. Loos, and G. S. Springer, “Heat of Reaction, Degree of Cure,

and Viscosity of Hercules 3501-6 Resin,” Journal of Composite Materials, vol.

, no. 6, pp. 510–520, Nov. 1982, doi: 10.1177/002199838201600605.

M. N. Olaya, G. M. Odegard, and M. Maiarù, “A Novel Approach to

Characterization of Composite Polymer Matrix Materials for Integrated

Computational Materials Engineering Approaches,” presented at the AIAA

Scitech 2021 Forum, Jan. 2021.

ASTM International, “E2890-12(2018) Standard Test Method for Tensile

Properties of Plastics,” West Conshohocken, PA, 2018. [Online]. Available:

doi: https://doi.org/10.1520/E2890-12R18

J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image

Correlation Matlab Software,” Exp Mech, vol. 55, no. 6, pp. 1105–1122, Jul.

, doi: 10.1007/s11340-015-0009-1.

Harilal Ramesh and Ramji M, “Adaptation of Open Source 2D DIC Software

Ncorr for Solid Mechanics Applications,” 2014, doi: 10.13140/2.1.4994.1442.

J. D. Littell, C. R. Ruggeri, R. K. Goldberg, G. D. Roberts, W. A. Arnold, and

W. K. Binienda, “Measurement of Epoxy Resin Tension, Compression, and

Shear Stress–Strain Curves over a Wide Range of Strain Rates Using Small Test

Specimens,” J. Aerosp. Eng., vol. 21, no. 3, pp. 162–173, Jul. 2008, doi:

1061/(ASCE)0893-1321(2008)21:3(162).

D20 Committee, “Test Method for Tensile Properties of Plastics,” ASTM

International. doi: 10.1520/D0638-14.

D. J. O’Brien and S. R. White, “Cure kinetics, gelation, and glass transition of

a bisphenol F epoxide,” Polym. Eng. Sci., vol. 43, no. 4, pp. 863–874, 2001, doi:

1002/pen.10071.

A. Gilat, R. K. Goldberg, and G. D. Roberts, “Strain Rate Sensitivity of Epoxy

Resin in Tensile and Shear Loading,” J. Aerosp. Eng., vol. 20, no. 2, pp. 75–89,

Apr. 2007, doi: 10.1061/(ASCE)0893-1321(2007)20:2(75).

J. B. Enns and J. K. Gillham, “Effect of the extent of cure on the modulus, glass

transition, water absorptio, and density of an amine-cured epoxy,” J. Appl.

Polym. Sci., vol. 28, no. 9, pp. 2831–2846, Sep. 1983, doi:

1002/app.1983.070280914.


Refbacks

  • There are currently no refbacks.