Open Access Open Access  Restricted Access Subscription Access

Prediction of PEEK Resin Properties for Processing Modeling Using Molecular Dynamics



Polymer Matrix Composites (PMCs) have been the subject of many recent studies due to their outstanding characteristics. For the processing of PMCs, a wide range of elevated temperatures is typically applied to the material, leading to the development of internal residual stresses during the final cool-down step. These residual stresses may lead to net shape deformations or internal damage. Also, volumetric shrinkage, and thus additional residual stresses, could be created during crystallization of the semi-crystalline thermoplastic matrix. Furthermore, the thermomechanical properties of semi-crystalline polymers are susceptible to the crystallinity content, which is tightly controlled by the processing parameters (processing temperature, temperature holding time) and material properties (melting and crystallization temperatures). Hence, it is vital to have a precise understanding of crystallization kinetics and its impact on the final component's performance to accurately predict induced residual stresses during the processing of these materials. To enable multi-scale process modeling of thermoplastic composites, molecular-level material properties must be determined for a wide range of crystallinity levels. In this study, the thermomechanical properties and volumetric shrinkage of the thermoplastic Poly Ether Ether Ketone (PEEK) resin are predicted as a function of crystallinity content and temperature using molecular dynamics (MD) modeling. Using crystallization-kinetics models, the thermo-mechanical properties are directly related to processing time and temperature. This research can ultimately predict the residual stress evolution in PEEK composites as a function of processing parameters.


Full Text:



Parlevliet, P.P., H.E. Bersee, and A. Beukers. 2006. "Residual stresses in

thermoplastic composites—A study of the literature—Part I: Formation of residual

stresses". Composites Part A: Applied Science and Manufacturing. 37(11): p.


Chapman, T., J. Gillespie Jr, R. Pipes, J.-A. Manson, and J. Seferis. 1990.

"Prediction of process-induced residual stresses in thermoplastic composites".

Journal of composite materials. 24(6): p. 616-643.

Shah, S., S. Patil, P. Deshpande, A. Krieg, K. Kashmari, H. Al Mahmud, J. King,

G.M. Odegard, and M. Maiaru. "Multi-scale Modeling for Virtual Manufacturing

of Thermoset Composites". in AIAA Scitech 2020 Forum. 2020.

Patil, S., S. Shah, P. DESHPANDE, K. Kashmari, G. ODEGARD, and M. Maiaru.

"Prediction of residual stress build-up in polymer matrix composite during cure

using a two-scale approach". in Proceedings of the American Society for

Composites—Thirty-fourth Technical Conference. 2019.

Kashmari, K., S. Patil, P. Deshpande, S. Shah, M. Maiaru, and G.M. Odegard

Molecular Modeling of PEEK Resins for Prediction of Properties in Process

Modeling, in Earth and Space 2021. 2021. p. 104-112.

Deshpande P., P., S., Shah S., Kashmari K., Odegard G.M., Maiaru M. "A Multiscale

Approach for Modelling the Cure of Thermoset Polymers within ICME". in

Proceedings of the American Society for Composites—Thirty-fourth Technical

Conference. 2019.

Talbott, M.F., G.S. Springer, and L.A. Berglund. 1987. "The effects of crystallinity

on the mechanical properties of PEEK polymer and graphite fiber reinforced

PEEK". Journal of Composite Materials. 21(11): p. 1056-1081.

Lee, Y. and R.S. Porter. 1986. "Crystallization of poly (etheretherketone)(PEEK) in

carbon fiber composites". Polymer Engineering & Science. 26(9): p. 633-639.

Lee, W.I., M.F. Talbott, G.S. Springer, and L.A. Berglund. 1987. "Effects of

cooling rate on the crystallinity and mechanical properties of thermoplastic

composites". Journal of Reinforced Plastics and Composites. 6(1): p. 2-12.

Lee, W.I. and G.S. Springer. 1987. "A model of the manufacturing process of

thermoplastic matrix composites". Journal of composite materials. 21(11): p. 1017-

Xu, H., Y. Li, and D. Zeng. 2017. "Process Integration and Optimization of ICME

Carbon Fiber Composites for Vehicle Lightweighting: A Preliminary

Development". SAE International Journal of Materials and Manufacturing. 10(3):

p. 274-281.

D’Mello, R.J., M. Maiarù, and A.M. Waas. 2015. "Effect of the curing process on

the transverse tensile strength of fiber-reinforced polymer matrix lamina using

micromechanics computations". Integrating Materials and Manufacturing

Innovation. 4(1): p. 7.

D'Mello, R., M. Maiaru, and A. Waas. 2016. "Virtual manufacturing of composite

aerostructures". The Aeronautical Journal. 120(1223): p. 61.

D'Mello, R.J., A.M. Waas, M. Maiaru, and R. Koon. "Integrated Computational

Modeling for Efficient Material and Process Design for Composite Aerospace

Structures". in AIAA Scitech 2020 Forum. 2020.

Maiaru, M., R.J. D’mello, and A.M. Waas. "Virtual Testing for the Mechanical

Characterization of Cured Polymer Matrix Composites". in Proceedings of the

American Society for Composites—Thirty-second Technical Conference. 2017.

LLorca, J., C. González, J.M. Molina‐ Aldareguía, J. Segurado, R. Seltzer, F. Sket,

M. Rodríguez, S. Sádaba, R. Muñoz, and L.P. Canal. 2011. "Multiscale modeling

of composite materials: a roadmap towards virtual testing". Advanced materials.

(44): p. 5130-5147.

Mohammadi, K., A.A. Madadi, Z. Bajalan, and H.N. Pishkenari. 2020. "Analysis

of mechanical and thermal properties of carbon and silicon nanomaterials using a

coarse-grained molecular dynamics method". International Journal of Mechanical

Sciences. 187: p. 106112.

Pisani, W.A., M.S. Radue, S. Chinkanjanarot, B.A. Bednarcyk, E.J. Pineda, K.

Waters, R. Pandey, J.A. King, and G.M. Odegard. 2019. "Multi-scale modeling of

PEEK using reactive molecular dynamics modeling and micromechanics".

Polymer. 163: p. 96-105.

Seo, J., A.M. Gohn, O. Dubin, H. Takahashi, H. Hasegawa, R. Sato, A.M.

Rhoades, R.P. Schaake, and R.H. Colby. 2019. "Isothermal crystallization of poly

(ether ether ketone) with different molecular weights over a wide temperature

range". Polymer Crystallization. 2(1): p. e10055.

G.M. Odegard, S.P., P. Deshpande,K. Kanhaiya, J. Winetrout, H. Heinz ,S. Shah,

M. Maiaru. "Molecular Dynamics Modeling of Epoxy Resins using a Reactive

Interface Force Field".

Deshpande, P., S. SHAH, S. PATIL, K. KASHMARI, M. OLAYA, G.

ODEGARD, and M. MAIARÙ. "Multi-scale Modelling of the Cure Process in

Thermoset Polymers Using ICME". in Proceedings of the American Society for

Composites—Thirty-fifth Technical Conference. 2020.

Nose, S. 1984. "A Molecular-Dynamics Method for Simulations in the Canonical

Ensemble". Molecular Physics. 52(2): p. 255-268.

Hoover, W.G. 1985. "Canonical Dynamics - Equilibrium Phase-Space

Distributions". Physical Review A. 31(3): p. 1695-1697.

Blundell, D. and B. Osborn. 1983. "The morphology of poly (aryl-ether-etherketone)".

Polymer. 24(8): p. 953-958.

Kim, K.-S., H.T. Hahn, and R.B. Croman. 1989. "The effect of cooling rate on

residual stress in a thermoplastic composite". Journal of Composites, Technology,

and Research. 11(2): p. 47-52.

KetaSpire, P. 2013. "Design & Processing Guide". Solvay Specialty Polymers,


Hadden, C.M., D.R. Klimek-McDonald, E.J. Pineda, J.A. King, A.M.

Reichanadter, I. Miskioglu, S. Gowtham, and G.M. Odegard. 2015. "Mechanical

properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale

modeling and experiments". Carbon. 95: p. 100-112.

Tomasi, J., W.A. Pisani, S. Chinkanjanarot, A.S. Krieg, D. Jaszczak, E.J. Pineda,

B.A. Bednarcyk, S. Miller, J.A. King, and I. Miskioglu. "Modeling-driven damage

tolerant design of graphene nanoplatelet/carbon fiber/epoxy hybrid composite

panels for full-scale aerospace structures". in AIAA Scitech 2019 Forum. 2019.

Chinkanjanarot, S., M.S. Radue, S. Gowtham, J.M. Tomasi, D.R. Klimek‐

McDonald, J.A. King, and G.M. Odegard. 2018. "Multi-scale thermal modeling of

cured cycloaliphatic epoxy/carbon fiber composites". Journal of Applied Polymer

Science. 135(25): p. 46371.

CORRIGAN, E., D. LEACH, and T. MCDANIELS. 1989. "The influence of

processing conditions on the properties of PEEK matrix composites". Materials

and processing- Move into the 90's. p. 121-131.

Velisaris, C.N. and J.C. Seferis. 1986. "Crystallization kinetics of

polyetheretherketone (PEEK) matrices". Polymer Engineering & Science. 26(22):

p. 1574-1581.

Motz, H. and J. Schultz. 1989. "The solidification of PEEK. Part I: morphology".

Journal of thermoplastic composite materials. 2(4): p. 248-266.

Koltzenburg, S., M. Maskos, and O. Nuyken 2017. Polymer Chemistry. Springer.

Velikov Jr, V.H.1996. Time dependent properties of semi-crystalline Poly (Arylene

Ether Ether Ketone)(PEEK) above and below the glass transition, Virginia Tech.

Harris, L.2011. A Study of the crystallisation kinetics in PEEK and PEEK

composites, University of Birmingham.

Cowie, J.M.G. and V. Arrighi 2007. Polymers: chemistry and physics of modern

materials. CRC press.

Tardif, X., B. Pignon, N. Boyard, J.W. Schmelzer, V. Sobotka, D. Delaunay, and

C. Schick. 2014. "Experimental study of crystallization of PolyEtherEtherKetone

(PEEK) over a large temperature range using a nano-calorimeter". Polymer

Testing. 36: p. 10-19.

Cebe, P. and S.-D. Hong. 1986. "Crystallization behaviour of poly (ether-etherketone)".

Polymer. 27(8): p. 1183-1192.


  • There are currently no refbacks.