Open Access Open Access  Restricted Access Subscription Access

What if Spiders Made Metamaterial Webs Using Materials with Mechanical Size-Effects?



Spider’s webs are elegant examples of natural composites that can absorb outof- plane impact energy to capture prey. Different spiders have different methods and structure of webs, and these variations in topologies have a significant effect on the prey catching abilities of the web. Taking inspiration from the spiders, metamaterials that have architectured topology can be fabricated according to end applications such as energy absorbers or impact tolerant materials. In this investigation, we theoretically examined impact loading on various orb-spider webs modeled with metamaterial architecture using materials that show size-dependent behavior. Using the size-dependent properties of nano-reinforced polymer-derived ceramics (PDCs), various metamaterial topologies were evaluated for out-of-plane impact due using ANSYS Ls-Dyna. The material properties capture the size dependency of the ceramics where smaller elements have higher strength due to reduced flaw intensity; the mechanical strength of these elements does not follow the conventional Griffith Theory. In this study, spider web geometries fabricated with PDCs with varying size elements were examined.


Full Text:



T. A. Blackledge, M. Kuntner, and I. Agnarsson, 2011. “The Form and Function of

Spider Orb Webs,” in Advances in Insect Physiology, Elsevier Science, pp. 175–262.

S. Zschokke, Y. Hénaut, S. P. Benjamin, and J. A. García-Ballinas, 2006. “Preycapture

strategies in sympatric web-building spiders,” Can. J. Zool., 84(7): 964–973.

F. Vollrath, 1992. “Spider webs and silks,” Sci. Am., 266(3): 70–77.

S. Zschokke, S. Countryman, and P. E. Cushing, 2021. “Spiders in space—orbweb-

related behaviour in zero gravity,” Sci. Nat., 108(1): 1.

J. M. Gosline, M. E. DeMont, and M. W. Denny, 1986. “The structure and

properties of spider silk,” Endeavour, 10(1): 37–43.

C. D. Dondale, J. H. Redner, and James H Redner. The Orb-weaving Spiders of

Canada and Alaska Araneae:Uloboridae, Tetragnathidae, Araneidae, Theridiosomatidae.

Ottawa: NRC Research Press, 2003.

A. Soler and R. Zaera, 2016. “The secondary frame in spider orb webs: the detail

that makes the difference,” Sci. Rep., 6(1): 31265.

S. W. Cranford, A. Tarakanova, N. M. Pugno, and M. J. Buehler, 2012. “Nonlinear

material behaviour of spider silk yields robust webs,” Nature, 482(7383): 72–76.

P. Fratzl and R. Weinkamer, 2007. “Nature’s hierarchical materials,” Prog. Mater.

Sci., 52(8): 1263–1334.

B. S. Lazarus, A. Velasco-Hogan, T. Gómez-del Río, M. A. Meyers, and I. Jasiuk,

“A review of impact resistant biological and bioinspired materials and structures,” J.

Mater. Res. Technol., 9(6): 15705–15738.

J.T. Overvelde, T.A. De Jong, Y. Shevchenko, S.A. Becerra, G.M. Whitesides,

J.C. Weaver, C. Hoberman, and K. Bertoldi, 2016. “A three-dimensional actuated origamiinspired

transformable metamaterial with multiple degrees of freedom,” Nat. Commun.,

(1): 10929.

M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, and A. M. Rao. “Carbon

Nanotubes,” in The Physics of Fullerene-Based and Fullerene-Related Materials, 2000, pp.


M. Inagaki, Y. Yang, and F. Kang, 2012. “Carbon Nanofibers Prepared via

Electrospinning,” Adv. Mater., 24(19): 2547–2566.

D. Li, J. T. McCann, Y. Xia, and M. Marquez, 2006. “Electrospinning: A Simple

and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes,” J. Am.

Ceram. Soc., 89(6): 1861–1869.

A. Vashisth and M. M. Mirsayar, 2020 “A combined atomistic-continuum study

on the temperature effects on interfacial fracture in SiC/SiO2 composites,” Theor. Appl.

Fract. Mech., 105: 102399.

J. Cai and M. Naraghi, 2018. “Non-intertwined graphitic domains leads to super

strong and tough continuous 1D nanostructures,” Carbon, 137: 242–251.

A. Vashisth, S. Khatri, S. H. Hahn, W. Zhang, A. C. T. van Duin, and M. Naraghi,

“Mechanical size effects of amorphous polymer-derived ceramics at the nanoscale:

experiments and ReaxFF simulations,” Nanoscale, 11(15): 7447–7456.

S. Zschokke, 2000 “Radius construction and structure in the orb-web of Zilla

diodia (Araneidae),” J. Comp. Physiol. A Sensory, Neural, Behav. Physiol., 186(10): 999–

S. Zschokke and A. Bolzern, 2007 “Erste Nachweise sowie Kenntnisse zur

Biologie von Cyclosa oculata (Araneae: Araneidae) in der Schweiz,” Arachnol.

Mitteilungen, 33: 11–17.

S. Zschokke and K. Nakata, 2010. “Spider orientation and hub position in orb

webs,” Naturwissenschaften, 97(1): 43–52.

S. Kumar, S. Tan, L. Zheng, and D. M. Kochmann, 2020. “Inverse-designed

spinodoid metamaterials,” npj Comput. Mater., 6(1): 73.


  • There are currently no refbacks.