Open Access Open Access  Restricted Access Subscription Access

Heating Rate Prediction for Induction Welding Magnetic Susceptors

ROMAIN G. MARTIN, CHRISTER JOHANSSON, JASON R. TAVARES, MARTINE DUBÉ

Abstract


Induction welding involves generating heat by applying an oscillating magnetic field, which produces eddy currents and Joule losses in an electrically-conductive material or hysteresis losses in a magnetic material. Most applications rely on eddy currents generation as composites are often made of electrically-conductive carbon fibres. However, in other applications, heat can be produced by a magnetic susceptor located at the weld interface of the parts to be joined. Composite films of magnetic particles dispersed in a thermoplastic matrix can serve as magnetic susceptors. Magnetic particles selection relies on various parameters that must be thoroughly defined beforehand. Firstly, the applied magnetic field amplitude and frequency is calculated, based on the generated current and the induction coil geometry. Secondly, the thermoplastic matrix is characterized, mainly with DSC measurements, to define its processing window. Finally, the magnetic properties of the particles are measured – for instance using a vibrating sample magnetometer (VSM) – to obtain the hysteresis curve for the applied field. The enclosed surface area of the hysteresis curve (i.e. absorbed energy density) is critical, as low hysteresis materials (i.e. soft magnets) will not dissipate enough heat, while high hysteresis materials (i.e. hard magnets) cannot be fully exploited as the saturation hysteresis is not reached within the used field amplitude. A methodology to approximate the hysteresis enclosed surface area with limited data is proposed, helping to anticipate the heating rate of a susceptor candidate material. Based on these parameters, the theoretical heating rates of three magnetic susceptor materials (magnetic particles of iron, nickel and magnetite) for induction welding are calculated. They are verified experimentally by comparing with the hysteresis analysis and by measuring the temperature evolution of samples made of polypropylene containing the magnetic particles.


DOI
10.12783/asc36/35740

Full Text:

PDF

References


A. Yousefpour, M. Hojjati, et J.-P. Immarigeon, « Fusion Bonding/Welding of Thermoplastic Composites », 2004, doi: 10.1177/0892705704045187.

C. Ageorges, L. Ye, et M. Hou, « Advances in fusion bonding techniques for joining thermoplastic matrix composites: A review », Composites Part A: Applied Science and Manufacturing, vol. 32, p. 839‑857, juin 2001, doi: 10.1016/S1359-835X(00)00166-4.

V. K. Stokes, « Joining methods for plastics and plastic composites: An overview », 1989. doi: 10.1002/pen.760291903.

M. J. Troughton, Éd., « Ch. 11 - Induction Welding », in Handbook of Plastics Joining (Second Edition), Boston: William Andrew Publishing, 2009, p. 113‑120. doi: 10.1016/B978-0-8155-1581-4.50013-5.

T. Bayerl, M. Duhovic, P. Mitschang, et D. Bhattacharyya, « The heating of polymer composites by electromagnetic induction – A review », Composites Part A: Applied Science and Manufacturing, vol. 57, p. 27‑40, févr. 2014, doi: 10.1016/j.compositesa.2013.10.024.

P. Sanders, « Electromagnetic welding: an advance in thermoplastics assembly », Materials & Design, vol. 8, no 1, p. 41‑45, janv. 1987, doi: 10.1016/0261-3069(87)90059-8.

R. Rudolf, P. Mitschang, et M. Neitzel, « Induction heating of continuous carbon-fibre-reinforced thermoplastics », Composites Part A-applied Science and Manufacturing - COMPOS PART A-APPL SCI MANUF, vol. 31, p. 1191‑1202, nov. 2000, doi: 10.1016/S1359-835X(00)00094-4.

L. Moser, « Experimental Analysis and Modeling of Susceptorless Induction Welding of High Performance Thermoplastic Polymer Composites », undefined, 2012, Consulté le: avr. 03, 2021. [En ligne]. Disponible sur: /paper/Experimental-Analysis-and-Modeling-of-Susceptorless-Moser/f24c3df7520ba247dce7fc9adc0906f6dcd84086

S. Pappadà, A. Salomi, J. Montanaro, A. Passaro, A. Caruso, et A. Maffezzoli, « Fabrication of a thermoplastic matrix composite stiffened panel by induction welding », Aerospace Science and Technology, vol. 43, p. 314‑320, juin 2015, doi: 10.1016/j.ast.2015.03.013.

S. Yarlagadda, B. K. Fink, et J. J. W. Gillespie, « Resistive Susceptor Design for Uniform Heating during Induction Bonding of Composites »:, Journal of Thermoplastic Composite Materials, août 2016, doi: 10.1177/089270579801100403.

R. Dermanaki Farahani, M. Janier, et M. Dubé, « Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites », Nanotechnology, vol. 29, janv. 2018, doi: 10.1088/1361-6528/aaa93c.

R. Dermanaki Farahani et M. Dubé, « Novel Heating Elements for Induction Welding of Carbon Fiber/Polyphenylene Sulfide Thermoplastic Composites », Advanced Engineering Materials, vol. 19, p. e201700294, juin 2017, doi: 10.1002/adem.201700294.

T. Bayerl, R. Schledjewski, et P. Mitschang, « Induction Heating of Thermoplastic Materials by Particulate Heating Promoters », Polymers and Polymer Composites, vol. 20, p. 333‑342, mai 2012, doi: 10.1177/096739111202000401.

W. Suwanwatana, S. Yarlagadda, et J. W. Gillespie, « Hysteresis heating based induction bonding of thermoplastic composites », Composites Science and Technology, vol. 66, no 11, p. 1713‑1723, sept. 2006, doi: 10.1016/j.compscitech.2005.11.009.

D. Bae et al., « Heating behavior of ferromagnetic Fe particle-embedded thermoplastic polyurethane adhesive film by induction heating », Journal of Industrial and Engineering Chemistry, vol. 30, p. 92‑97, oct. 2015, doi: 10.1016/j.jiec.2015.05.007.

E. D. Wetzel et B. K. Fink, « Feasibility of Magnetic Particle Films for Curie Temperature-Controlled Processing of Composite Materials », p. 83.

J. M. D. Coey, Magnetism and Magnetic Materials. Cambridge University Press, 2010.

S. Chikazumi, Physics of Ferromagnetism. OUP Oxford, 2009.

J. Goodenough, « Summary of losses in magnetic materials », Magnetics, IEEE Transactions on, vol. 38, p. 3398‑3408, oct. 2002, doi: 10.1109/TMAG.2002.802741.

M. G. Vinum et al., « Dual‐Function Cobalt–Nickel Nanoparticles Tailored for High‐Temperature Induction‐Heated Steam Methane Reforming », Angew. Chem. Int. Ed., vol. 57, no 33, p. 10569‑10573, août 2018, doi: 10.1002/anie.201804832.

B. Moskowitz, « Hitchhiker ’ s Guide to Magnetism », 2002. /paper/Hitchhiker-%27-s-Guide-to-Magnetism-Moskowitz/1a3468026372a76161622eb37acd225ad7bba679 (consulté le janv. 18, 2021).

Testo SE & Co., « Thermography Pocket Guide ». 2017. Consulté le: avr. 09, 2021. [En ligne]. Disponible sur: https://static-int.testo.com/media/1d/b7/21fc65abbea1/Pocket-Guide-Thermography-EN.pdf


Refbacks

  • There are currently no refbacks.