Open Access Open Access  Restricted Access Subscription or Fee Access

Discrete Damage Modeling of Matrix Dominated Failure Including Random Spatial Variation of Strength



Discrete Damage Modeling (DDM) was applied to strength prediction of three types of composite tape specimens exhibiting rather brittle behavior. These were transverse tensile coupons, three-point bend 90° coupons and NASA LaRC Clamped Tapered Beam sub-element. The performed strength predictions are sensitive to the value of the transverse tensile strength Yt. Deterministic strength predictions required different values of Yt for realistic prediction of strength for the three specimen categories. Weibull scaled seeding of transverse tensile strength was introduced to address this problem. Cohesive Zone Method (CZM) in the field of random initiation strength distribution was examined and revealed that a finite seed length is required in order the reproduce brittle behavior. A 0.4mm seed length window was applied and resulted in realistic predictions of strength in all three specimens based on the Yt=64MPa measured on standard ASTM 90° coupons and Weibull modulus of a=13.


Full Text:



  • There are currently no refbacks.